

# Use of the Moon as a calibration reference for NPP VIIRS

Frederick S. Patt, Robert E. Eplee, Robert A. Barnes,
Gerhard Meister(\*) and James J. Butler
NASA Goddard Space Flight Center

August 2, 2005

# **Background**

- Ocean color remote sensing imposes very stringent requirements on radiometric stability.
- SeaWiFS and MODIS have successfully used regular lunar observations to monitor radiometric stability in visible and (for SeaWiFS) NIR bands.
- VIIRS will be the source of Ocean Color continuity data sets, starting with the NPP launch in 2008.
- These and other sensors (e.g., ALI) have also used the Moon as a cross-calibration reference.
- Lunar observations utilize the model of spectral reflectance developed by USGS; this model has been validated over a small (few degrees) range of phase angles.

# VIIRS Lunar Observation Approach

- VIIRS, like MODIS will observe the Moon through the Space View port.
- 8 or 9 observations are available per year.
- The following slide shows a MODIS observation of the moon

# All Detectors 412nn

(Band 8,

#### MODIS scan:



# One detector:



# VIIRS Lunar Observation Approach

- At the nominal (nadir-pointing) spacecraft attitude, observations will occur over a range of phase angles > 10 degrees.
- Roll maneuvers are required to limit the phase angle range; a phase of 55 degrees is needed to support cross-comparisons with MODIS.

# VIIRS Space View Port Geometry



# VIIRS Lunar Views in 1st Half of 2008



# VIIRS Lunar Views in 2nd Half of 2008



# Required Roll Angles for 55° Lunar Phase



### The USGS Lunar Model

- H. Kieffer et al. have developed a lunar irradiance model to account for reflectance changes with lunar phase and libration.
- This model has been used with considerable success, but only for a small range of phase angles; for MODIS this range has been centered at 55 degrees.
- The model does not currently support the full range of VIIRS reflective bands, but can be extended for this purpose (ALI used as surrogate).
- Reference stability is <0.1%/year, assuming limited phase range.

## "Flatness" of the Lunar Reference





#### Lunar irradiance



Phase and libration changes depend on 4 input parameters in the USGS lunar model

### "Flatness" of the Lunar Reference

- Comparisons with the lunar model are made for the time and location of the satellite instrument.
- They include phase and libration effects
- The analysis presented here gives an estimate of the "flatness" of the lunar reference.
- The lunar measurements by the satellite instrument can provide a quality control check for phase and libration effects in the model. Look for phase and libration dependencies in the comparison results. An extended series of satellite measurements may be necessary

### Lunar Model Results for ALI Band 6 (866 nm)



41 measurements, phase angles from 52° to 56° Squares – model values (including phase/libration) Circles – model values (phase/libration effects removed)

### Corrected Lunar Measurements for MODIS



### Instrument Cross-Calibration

- Uses relative differences in lunar spectral irradiance measurements
- Requires two models: solar spectral irradiance and lunar spectral reflectance
- Both models must be well known in terms of relative spectral changes
- Irradiance changes with wavelength are much greater than reflectance changes

#### **Instrument Cross-Calibration**



- (a) Lunar spectral reflectance (lunar model)
- (b) Solar spectral irradiance (Thuillier et al., 2004)

### **Cross-Calibration with MODIS**

- Nearly all VIIRS bands are within 10nm of the corresponding MODIS bands.
- Stability of the lunar surface allows for accurate cross calibration of the two sensors, provided that the phase angle limitation is maintained (i.e., VIIRS roll maneuvers during lunar views).
- The accuracy of the USGS model allows comparisons even for non-concurrent observations (expected gap between Terra MODIS and NPP VIIRS)

#### Nominal MODIS/VIIRS Cross-Calibration

| MODIS          | Center     | Lunar           | VIIRS      | Center     | Lunar           | Wavelength | Reflectance |
|----------------|------------|-----------------|------------|------------|-----------------|------------|-------------|
| Band           | Wavelength | Reflectance     | Band       | Wavelength | Reflectance     | Difference | Difference  |
|                | (nm)       | (dimensionless) |            | (nm)       | (dimensionless) | (nm)       | (%)         |
| 8              | 414.3      | 0.07678         | M1         | 412.1      | 0.07639         | -2.2       | -0.5        |
| 9              | 442.4      | 0.08228         | M2         | 445.6      | 0.08288         | 3.2        | 0.7         |
| 10             | 486.6      | 0.09010         | M3         | 490.4      | 0.09072         | 3.8        | 0.7         |
| 12             | 546.7      | 0.09939         | M4         | 555.3      | 0.10061         | 8.6        | 1.2         |
| 4              | 553.7      | 0.1004          | M4         | 555.3      | 0.1006          | 1.6        | 0.2         |
| 1              | 646.2      | 0.1128          | <b>I</b> 1 | 640.8      | 0.1120          | -5.4       | -0.7        |
| 2              | 856.6      | 0.1303          | M7/I2      | 865.0      | 0.1305          | 8.4        | 0.2         |
| 5 <sup>b</sup> | 1248.3     | 0.1666          | M8         | 1239.8     | 0.1658          | -8.5       | -0.5        |
| 6 <sup>b</sup> | 1629.1     | 0.2004          | M10/I3     | 1610.7     | 0.1993          | -18.4      | -0.5        |
| 7 <sup>b</sup> | 2113.5     | 0.2296          | M11        | 2249.6     | 0.2409          | 136.1      | 4.9         |

For most band pairs, reflectance differences in the model are small.

If the uncertainties in the reflectance differences are  $\pm 50\%$  of their values, then the Moon should provide an adequate cross calibration reference.

Uncertainties in the solar irradiance model must be considered, too.

### **Conclusions**

- The Moon has proven to be an invaluable reference for monitoring satellite sensor radiometric stability.
- VIIRS can make typically 9 lunar observations per year; these measurements can be used with the USGS lunar model to accurately track the radiometric stability, but only with a limited phase angle range.
- The model will also support cross-comparisons of NPP VIIRS with Terra MODIS, but only if measurements are made close to 55 degrees phase.
- Both of these restrictions require roll maneuvers of up to 15 degrees during lunar views.

# Backup slides



### 4 parameters for phase and libration modeling









### Advantages of moon over solar diffuser:

- no earthshine (hardware solution for NPP in progress, but not assured)
- constant absolute reflectance (no monitoring necessary)
- known directional reflectance
- no vignetting from SD screen (detector dependent effect in MODIS)

far field measurement