
Global Processing of MODIS for Operational SST, Ocean Color, and GHRSST

Bryan Franz and the NASA Ocean Biology Processing Group

OBPG Ocean Color Activities

- Global processing & distribution (Level-0 through Level-3)
 - SeaWiFS
 - MODIS/Aqua (& MODIS/Terra)
 - CZCS
 - OCTS
- Missions to Measurements
 - Sensor calibration/characterization
 - Product validation (SeaBASS MDB)
 - Algorithm development and evaluation (NOMAD)
 - User processing and display (SeaDAS)
 - User support (Ocean Color Forum)

http://oceancolor.gsfc.nasa.gov/

	<u>1978</u>	J	F	M	A	M	J	J	A	S	<u>0</u>	<u>N</u>	D
	<u>1979</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	<u>J</u>	<u>A</u>	<u>s</u>	<u>0</u>	<u>N</u>	D
	<u>1980</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
	<u>1981</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
	<u>1982</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	<u>N</u>	<u>D</u>
	<u>1983</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	<u>N</u>	D
	<u>1984</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
M	<u>1985</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	<u>J</u>	<u>A</u>	<u>s</u>	<u>0</u>	<u>N</u>	D
S	<u>1986</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	J	A	S	0	N	D
s	<u>1996</u>	J	F	M	A	M	J	J	A	S	0	N	D
i	<u>1997</u>	J	F	M	A	M	<u>J</u>	J	A	S	<u>0</u>	N	D
n	<u>1998</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
	<u>1999</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
	<u>2000</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
	<u>2001</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
	<u>2002</u>	<u>J</u>	F	M	A	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	N	D
	<u>2003</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	<u>J</u>	A	<u>s</u>	<u>0</u>	<u>N</u>	D
	<u>2004</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	<u>J</u>	<u>A</u>	<u>s</u>	<u>0</u>	<u>N</u>	D
	<u>2005</u>	<u>J</u>	F	M	<u>A</u>	M	<u>J</u>	<u>J</u>	<u>A</u>	<u>s</u>	<u>0</u>	N	D

August 200					200:	5	September					2005		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	
	1	2	3	4	<u>5</u>	6					1	2	3	
	XXX	XXX	XXX	XXX	۸۸۸	۸۸۸					XXX	XXX	XXX	
7	8	9	<u>10</u>	11	<u>12</u>	<u>13</u>	4	<u>5</u>	6	7	8	9	10	
^^^	۸۸۸	۸۸۸	۸۸۸	۸۸۸	۸۸۸	000	XXX	XXX	۸۸۸	^^^	۸۸۸	^^^	^^^	
<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	<u>11</u>	12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	
000	000	000	000	000	000	000	۸۸۸	۸۸۸	۸۸۸	000	000	000	000	
21	<u>22</u>	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>18</u>	<u>19</u>	<u>20</u>	21	<u>22</u>	<u>23</u>	<u>24</u>	
***	***	***	***	***	***	***	000	000	000	000	***	***	***	
28	29	30	31				25	26	27	28	29	30		
***	XXX	XXX	XXX				***	***	***	***	***	XXX		

	Oct	obe	2005				
S	M	T	W	T	F	S	
						1	
						XXX	
2	3	4	<u>5</u>	6	7	8	
XXX	XXX	XXX		XXX	XXX	^^^	
9			12			15	
۸۸۸	^^^	^^^	^^^	^^^	^^^	^^^	
16	17	18	19	20	21	22	
000	000	000	000	000	000	000	
23	24	25	26	27	28	29	
000	***	***	***	***	***	***	
30	31						
***	***						

OBPG Ocean Color Activities

- Global processing & distribution (Level-0 through Level-3)
 - SeaWiFS
 - MODIS/Aqua (& MODIS/Terra)
 - CZCS
 - OCTS
- Missions to Measurements
 - Sensor calibration/characterization
 - Product validation (SeaBASS MDB)
 - Algorithm development and evaluation (NOMAD)
 - User processing and display (SeaDAS)
 - User support (Ocean Color Forum)
- We anticipate a full reprocessing of all OC missions to begin sometime in late 2007
 - 10 years SeaWiFS, 7-8 years Terra, and 5 years Aqua.

OBPG SST Activities

- MODIS/Aqua & MODIS/Terra
 - global near-realtime SST production & distribution (Level-0 through Level-3)
 - intermediate Level-2 production for GHRSST
 - community processing and display support through SeaDAS
 - user support through the Ocean Color Forum
- MODIS/Aqua Mission Reprocessing & Distribution
 - completed March 2006
- MODIS/Terra Mission Reprocessing & Distribution
 - completed April 2007
- Algorithm development and validation provided by Minnett, Evans, and Kilpatrick, University of Miami

Miami

algorithm development and coefficient updates quality assessment

MODIS SST Interaction

algorithms

coefficients

PO.DAAC

Level-3 distribution (POET)

OBPG

software development and algorithm integration production processing quality control archive & distribution

L3 Operational Products

Science Community

Level-3

L2 & L3 Operational Products

User Support & Software

Miami

algorithm development and coefficient updates quality assessment uncertainties (SSES)

MODIS SST Interaction

+ GHRSST

Level-3

algorithms

coefficients

SSES tables

PO.DAAC

Level-3 distribution (POET)

GHRSST product reformatting and ancillary merge (L2P)

GHRSST L2P distribution

OBPG

software development and algorithm integration production processing quality control archive & distribution

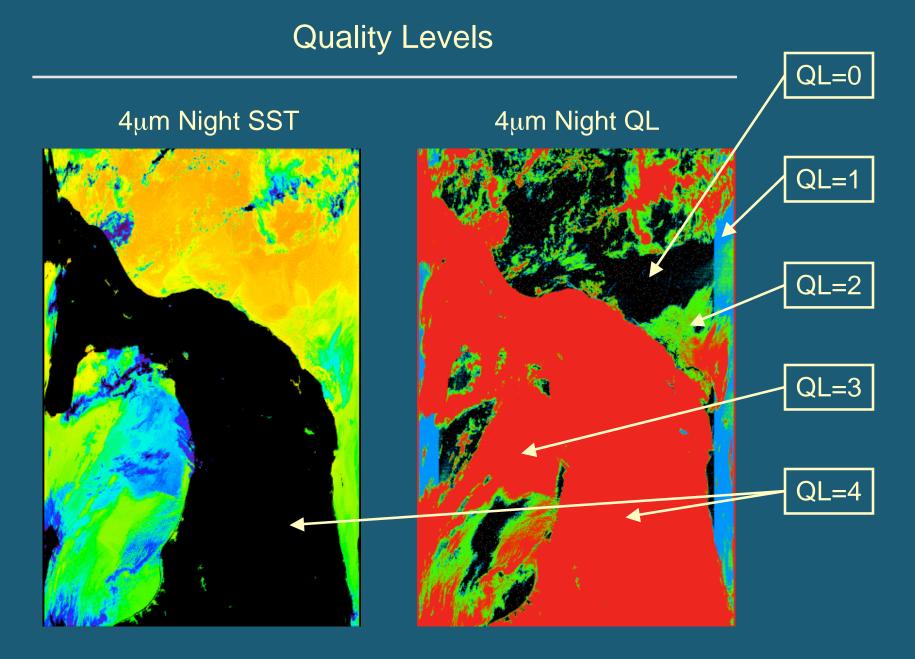
L3 Operational Products

L2 GHRSST-specific

Science Community GHRSST Users

L2P

L2 & L3 Operational Products

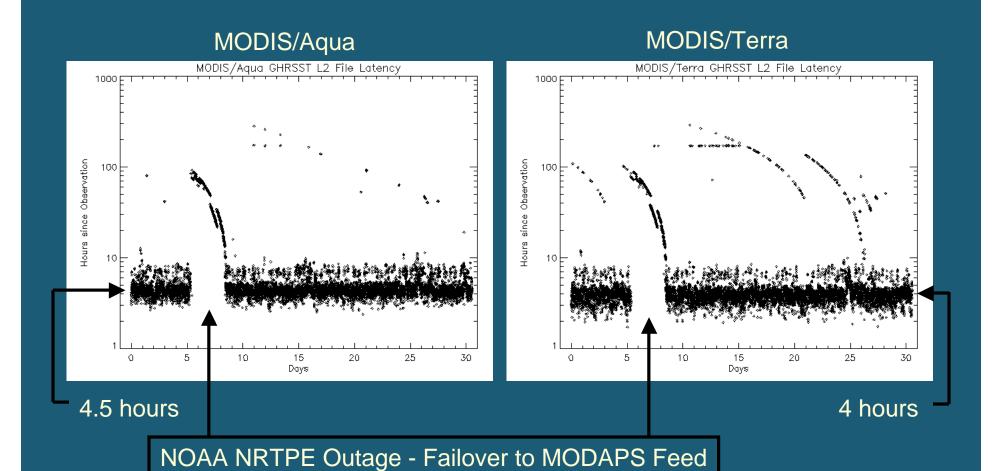

User Support & Software

MODIS GHRSST-specific Level-2 File Distribution

 HDF4 format, nearly identical to operational L2 SST products, but with additional content (e.g., SSES fields)

SSES Fields

- Determined from static table (hyper-cube) developed by Miami, derived my validation against in situ MDB
- Updated April 2007
- SSES hyper-cube stratified by
 - SST level
 - day or night
 - season
 - view zenith
 - brightness temperature difference
 - latitude
 - quality level

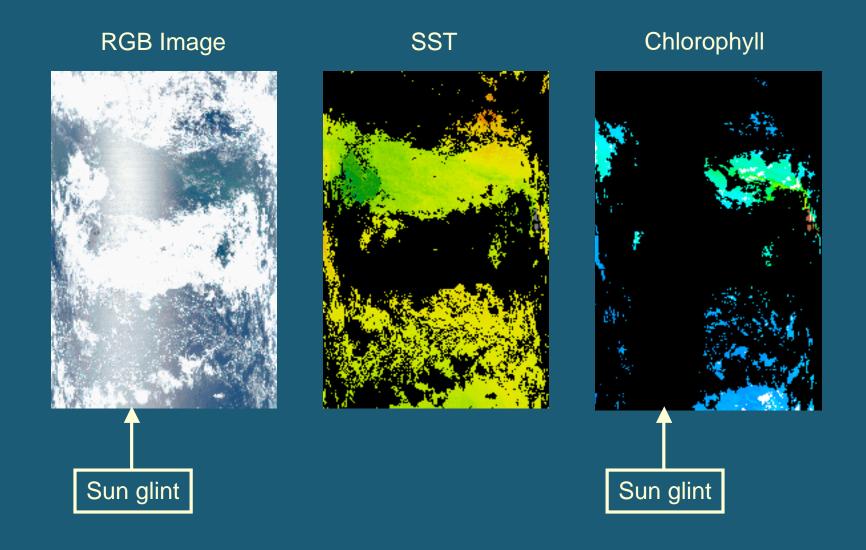


Additional information: http://oceancolor.gsfc.nasa.gov/DOCS/modis_sst/

MODIS GHRSST-specific Level-2 File Distribution

- HDF4 format, nearly identical to operational L2 SST products, but with additional content (e.g., SSES fields)
- Files currently distributed to RDAC (JPL) via rolling ftp archive
 - Quicklook (best available ancillary, near real-time)
 - Refined (best ancillary, 4-8 days delay)
 - Operational since October 2005
- Aqua (ftp://oceans.gsfc.nasa.gov/MODISA/GHRSST/)
- Terra (ftp://oceans.gsfc.nasa.gov/MODIST/GHRSST/)

GHRSST-specific L2 Data Latency Time of Observation to Time of Distribution to RDAC (JPL)


What exactly is in these GHRSST-specific MODIS L2 HDF files?

Revised GHRSST Daytime L2 File Content

	Data Set	Description
	year, day, msec	scan time
	longitude	pixel longitude (subsamp by 8)
	latitude	pixel latitude (subsamp by 8)
	sstref	Reynolds SST (co-located)
	sst	11-12um SST
	bias_sst	11-12um SST SSES bias
	stdv_sst	11-12um SST SSES std. dev.
	qual_sst	11-12um quality levels
•	chlor_a	Chlorophyll-a
OC Products	K_490	Diffuse attenuation at 490 nm
	tau_551	Aerosol optical depth 551 nm

Are the OC products being utilized?

Retrieval Coverage Differences Between SST and OC

Revised GHRSST Nighttime L2 File Content

Description Data Set year, day, msec scan time longitude pixel longitude (subsamp by 8) latitude pixel latitude (subsamp by 8) Reynolds SST (co-located) sstref 11-12um SST sst 11-12um SST SSES bias bias sst stdv sst 11-12um SST SSES std. dev. qual_sst 11-12um quality levels 4um SST sst4 bias_sst 4 4um SST SSES bias stdv_sst 4 4um SST SSES std. d qual_sst4 4um SST quality leve 4um SST SSES std. dev. 4um SST quality levels

Now, we plan to merge operational and GHRSST-specific L2 production

Miami

algorithm development and coefficient updates quality assessment uncertainties (SSES)

Revised MODIS SST Interaction

+ GHRSST

Level-3

algorithms

coefficients

SSES tables

PO.DAAC

Level-3 distribution (POET)

GHRSST product reformatting and ancillary merge (L2P)

GHRSST L2P distribution

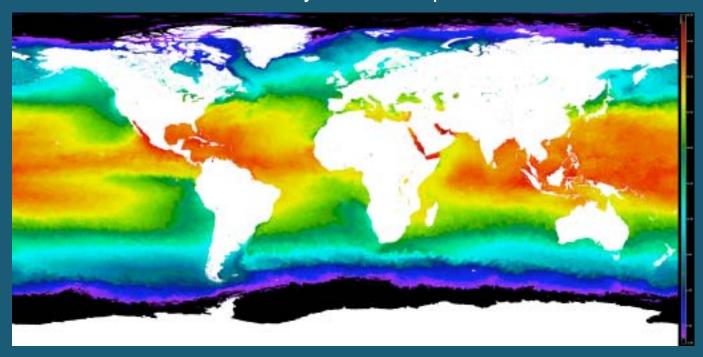
OBPG

software development and algorithm integration production processing quality control archive & distribution

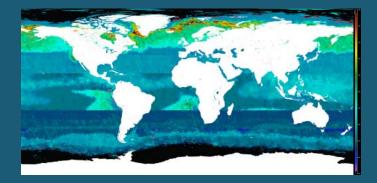
L2 GHRSST-specific

L3 Operational Products

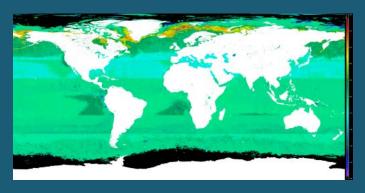
Science Community GHRSST Users


L2 & L3 Operational Products

User Support & Software


Advantages:

- Reduced production cost (disk space, CPU, problem tracking)
- GHRSST-compatible L2 products online for full mission lifespan
- Reprocessing support
- Level-3 capabilities


Daytime 11-12μm SST MODISA - Monthly Mean - September 2005

SSES Std Dev (0° - 2° C)

SSES Bias (-2° - 2° C)

Advantages:

- Reduced production cost (disk space, CPU, problem tracking)
- GHRSST-compatible L2 products online for full mission lifespan
- Reprocessing support
- Level-3 capabilities

Advantages:

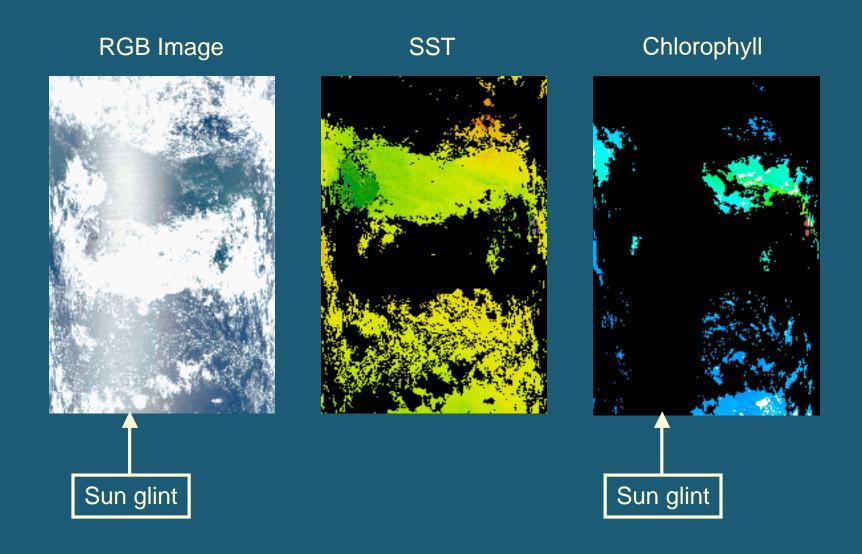
- Reduced production cost (disk space, CPU, problem tracking)
- GHRSST-compatible L2 products online for full mission lifespan
- Reprocessing support
- Level-3 capabilities

Disadvantages:

- Changes to L2 file content will be restricted to reprocessing events
- We prefer to eliminate the overlap with operational OC files
 - same product in multiple files causes user confusion
 - the RDAC can merge data from separate OC and SST files

Advantages:

- Reduced production cost (disk space, CPU, problem tracking)
- GHRSST-compatible L2 products online for full mission lifespan
- Reprocessing support
- Level-3 capabilities


Disadvantages:

- Changes to L2 file content will be restricted to reprocessing events
- We prefer to eliminate the overlap with operational OC files
 - same product in multiple files causes user confusion
 - the RDAC can merge data from separate OC and SST files

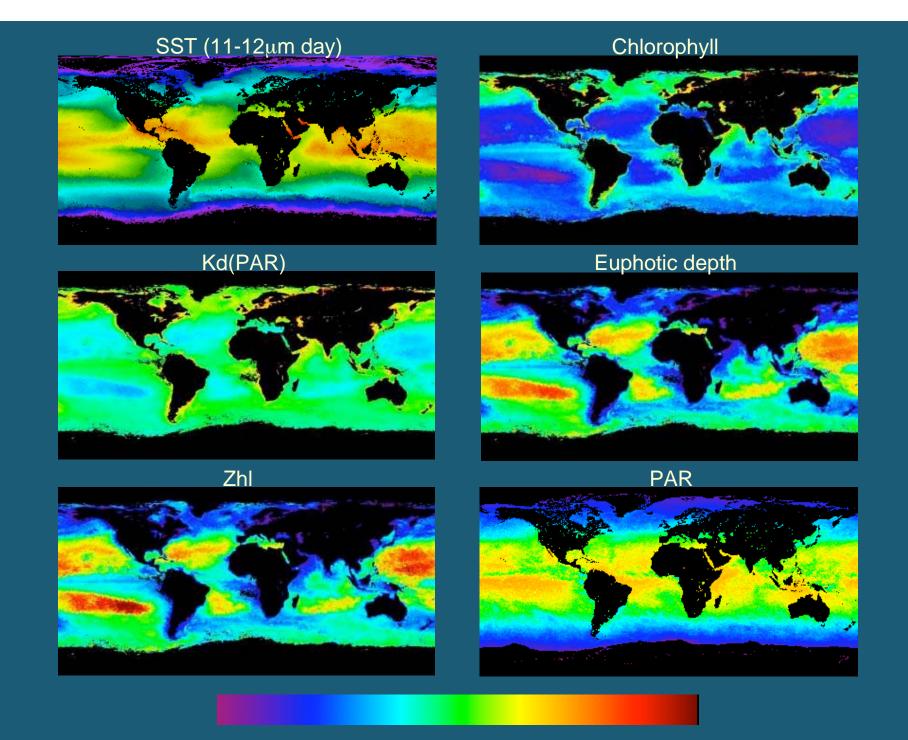
Also, consider that:

Merging from multi-day OC composites may be more useful

Retrieval Coverage Differences Between SST and OC

Consider using multi-day (L3) composites of OC products to merge with SST

Advantages:

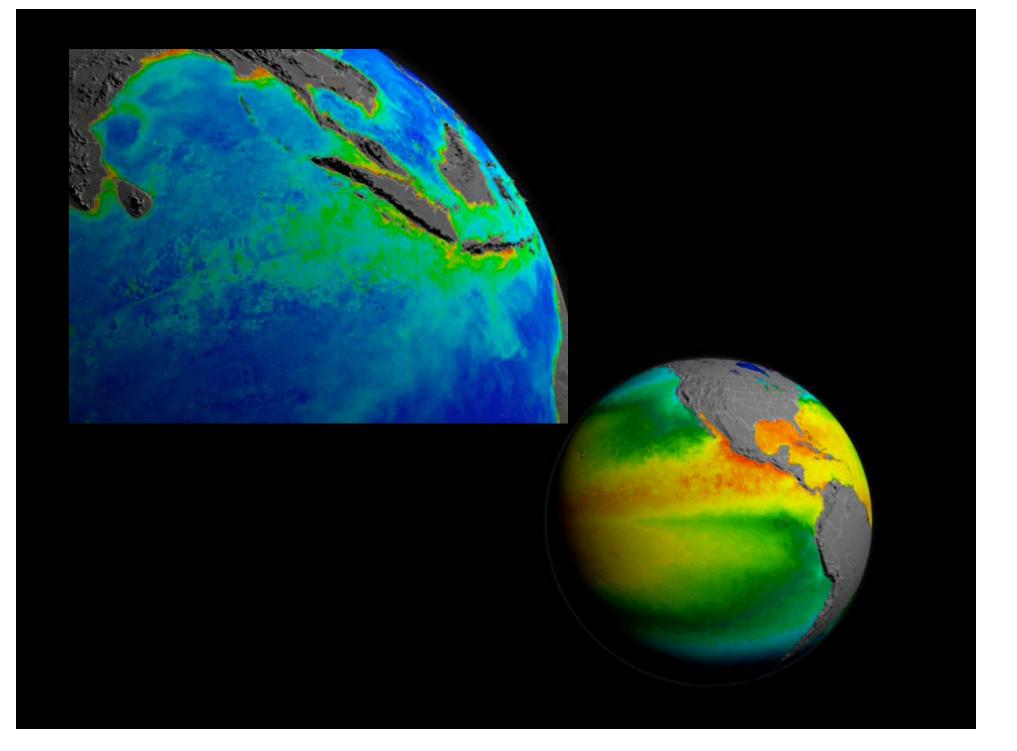

- Reduced production cost (disk space, CPU, problem tracking)
- GHRSST-compatible L2 products online for full mission lifespan
- Reprocessing support
- Level-3 capabilities

Disadvantages:

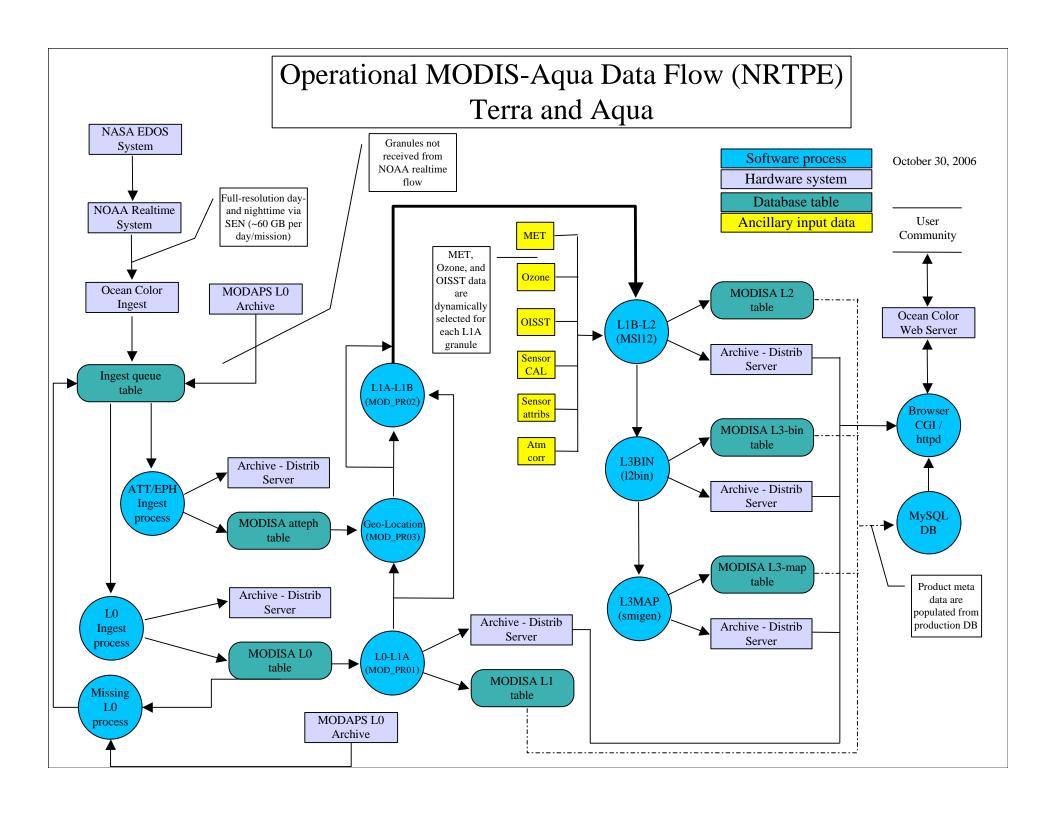
- Changes to L2 file content will be restricted to reprocessing events
- We prefer to eliminate the overlap with operational OC files
 - same product in multiple files causes user confusion
 - the RDAC can merge data from separate OC and SST files

Also, consider that:

- Merging from multi-day OC composites may be more useful
- Other non-operational products may be of more interest


Summary

- The OBPG currently produces the Level-2 MODIS data for input to the GHRSST RDAC.
- We also produce the operational Level-2 and Level-3 SST and Ocean Color products for general distribution (including to 3rd-party distributors such as POET, Giovanni, and GlobColor).
- We plan to merge the two Level-2 SST streams to a common Level-2 HDF format in the next reprocessing (2007).
- As such, we'd like to remove any overlap in product content between operational SST and OC products (e.g., chlorophyll, Kd(490)).
- The GHRSST ST (diurnal variability working group) may wish recommend the incorporation of alternative OC products which better complement SST.


Movies

- 1) East Coast of Australia, MODIS SST
- 2) Global, MODIS SST and SeaWiFS OC

Thank You!

GHRSST L2 File Content

Data Set	Description
year, day, msec	scan time
longitude	pixel longitude
latitude	pixel latitud e
sst	11-12um SST
bias_sst	11-12um SST SSES bias
stdv_sst	11-12um SST SSES std. dev.
qual_sst	11-12um quality levels
sst4	4um SST
bias_sst 4	4um SST SSES bias
stdv_sst 4	4um SST SSES std. dev.
qual_sst4	4um SST quality levels
sstref	Reynolds SST (co-located)
l2_flags	e.g., land, day/night per pixel

~65MB per 5-min MODIS granule, uncompressed

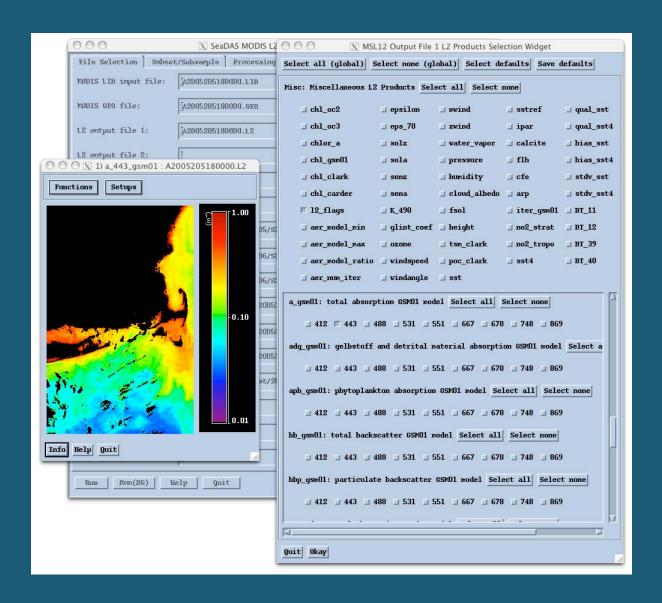
~20GB (288 granules) per day per sensor

"Potential" Options for GHRSST L2 File Size Reduction

- 1) Deal with it! The "H" stands for high-resolution.
 - a) our only intended customer is Ed
 - b) is this an OBPG or RDAC issue?
- 2) Sub-sample lon/lat along-scan by 8 (28% reduction)
- 3) 4um SST
 - a) eliminate from L2 (19% reduction)
 - b) produce separate L2 for 4um (night) and 11-12um
 - c) eliminate from daytime L2 (mixed day/night?)
- 4) Quality Levels
 - a) zero-out lower quality pixels to improve compression
 - b) reformat from swath to time-ordered vectors and only include best quality pixels.
- 5) Reduction of Resolution
 - a) sub-sample to every 4th pixel & line (4km at nadir, 84% reduction)
 - b) average to 4km at nadir (raises many problems/concerns)

"Potential" Options for GHRSST L2 File Size Reduction

- 1) Deal with it! The "H" stands for high-resolution.
 - a) our only intended customer is Ed
 - b) is this an OBPG or RDAC issue?
- 2) Sub-sample lon/lat along-scan by 8 (28% reduction)
- 3) 4um SST
 - a) eliminate from L2 (19% reduction)
 - b) produce separate L2 for 4um (night) and 11-12um
 - c) eliminate from daytime L2 (mixed day/night?)
- 4) Quality Levels
 - a) zero-out lower quality pixels to improve compression
 - reformat from swath to time-ordered vectors and only include best quality pixels.
- 5) Reduction of Resolution
 - a) sub-sample to every 4th pixel & line (4km at nadir, 84% reduction)
 - b) average to 4km at nadir (raises many problems/concerns)


"Potential" Options for GHRSST L2 Expansion

- sensor zenith angle
- brightness temps
- chlorophyll concentration
 - daytime, cloud & glint-free
- aerosol optical thickness
 - daytime, cloud & glint-free

"Potential" Options for GHRSST L2 Expansion

- sensor zenith angle
- brightness temps
- chlorophyll concentration
 - daytime, cloud & glint-free
- aerosol optical thickness
 - daytime, cloud & glint-free

SeaDAS

