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Abstract

A multi-spectral classification and quantification technique is developed for estimating chlorophyll a concentrations, Chl, in shallow

oceanic waters where light reflected by the bottom can contribute significantly to the above-water remote-sensing reflectance spectra, Rrs(k).
Classification criteria for determining bottom reflectance contributions for shipboard Rrs(k) data from the west Florida shelf and Bahamian

waters (1998–2001; n =451) were established using the relationship between Rrs(412)/Rrs(670) and the spectral curvature about 555 nm,

[Rrs(412)*Rrs(670)]/Rrs(555)
2. Chlorophyll concentrations for data classified as ‘‘optically deep’’ and ‘‘optically shallow’’ were derived

separately using best-fit cubic polynomial functions developed from the band-ratios Rrs(490)/Rrs(555) and Rrs(412)/Rrs(670), respectively.

Concentrations for transitional data were calculated from weighted averages of the two derived values. The root-mean-square error (RMSElog10)

calculated for the entire data set using the new technique was 14% lower than the lowest error derived using the best individual band-ratio. The

standard blue-to-green, band-ratio algorithm yields a 26% higher RMSElog10 than that calculated using the new method. This study

demonstrates the potential of quantifying chlorophyll a concentrations more accurately from multi-spectral satellite ocean color data in oceanic

regions containing optically shallow waters.

D 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The quantity and spectral quality of light reflected by the

ocean’s surface or water-leaving radiance, Lw(k), are controlled
by the inherent optical properties (IOP) of the water column

(absorption, a(k), and backscattering, bb(k)), downwelling

irradiance, Ed(k), and the angular distribution of light within

the ocean (Gordon et al., 1988). For optically shallow waters,

radiance reflected by the bottom also contributes to Lw(k) and
can vary with bottom depth, H, and bottom albedo, q(k)
(Carder et al., 1993; Lee et al., 1998a, 1998b, 1999; Lyzenga,

1978; Maritorena et al., 1994; Spitzer & Dirks, 1987).

Most empirical ocean color algorithms for deriving chloro-

phyll a concentrations, Chl, have been developed primarily for

optically deep waters where bottom reflectance is negligible.

Such algorithms strongly depend upon correlations between
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Chl and spectral blue-to-green ratios of Lw(k) or remote-

sensing reflectance, Rrs(k), where Rrs(k) is equal to the ratio of

water-leaving radiance to downwelling irradiance. The blue

waveband is traditionally located near the phytoplankton

absorption peak (¨440 nm) where chlorophyll a absorbs

maximally. The green or ‘‘reference’’ waveband is typically

located in a region of minimal phytoplankton absorption

(¨550 to 555 nm). For Coastal Zone Color Scanner (CZCS)

data (1978–1986), chlorophyll concentrations were estimated

using ratios of Lw(443)/Lw(550) (Gordon et al., 1983).

Although this algorithm was validated with field data

collected from fewer than 60 stations, it successfully provided

accurate pigment concentrations to T40% accuracy in

optically deep waters where phytoplankton dominated the

optical properties.

The blue waveband in blue-to-green, band-ratio algorithms

has also been red-shifted from ¨440 nm to 490 and 510 nm to

minimize interference due to colored dissolved organic matter

(CDOM) absorption that absorbs blue light strongly and signal-

to-noise errors that occur with increasing chlorophyll and
ent 101 (2006) 13 – 24
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Table 1

Cruise data summary

Program Cruise Location Dates

TOTO tt0498 Bahamas, Florida Straits,

and west Florida shelf

04/01/98–04/07/98

tt0499 04/12/99–04/19/99

tt0400 04/23/00–04/30/00

CoBOP cbp0598 Bahamas, Florida Straits,

and west Florida shelf

05/15/98–06/02/98

cbp0599 05/17/99–06/07/99

cbp0500 05/13/00–06/01/00

FSLE FSLE3 West Florida shelf 07/01/00–07/10/00

FSLE4 11/04/00–11/14/00

FSLE5 04/18/01–04/26/01

ECOHAB eh0399 West Florida shelf 03/01/99–03/04/99

eh0799 07/05/99–07/08/99

eh0999 09/07/99–09/10/99

eh1199 11/06/99–11/08/99

eh0100 01/11/00–01/14/00

eh0300 03/01/00–03/04/00

eh0800 08/02/00–08/05/00

eh1000 10/04/00–10/06/00

eh1100 11/07/00–11/10/00

eb0201 02/06/01–02/07/01

eh0401 04/03/01–04/06/01

eh0601 06/05/01–06/08/01

eh0701 06/30/01–07/03/01

eh0801 08/01/01–08/01/01

eh0901 08/28/01–08/31/01

eb0901 08/29/01–08/30/01

eb1001 10/01/01–10/02/01

hy1001 10/04/01–10/04/01
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CDOM concentrations (O’Reilly et al., 1998, 2000). Although,

phytoplankton absorption at 490 and 510 nm is dominated by

accessory pigments, chlorophyll a concentrations can be

derived accurately from these band-ratios because accessory

pigment and chlorophyll concentrations are highly correlated

(Trees et al., 2000). Algorithms for the Sea-viewing Wide

Field-of-View Sensor (SeaWiFS) (OC4) and Moderate Res-

olution Imaging Spectroradiometer (MODIS) (OC3m) cur-

rently employ a maximum band-ratio approach using all three

of these or similar band-ratios with a fourth-order polynomial

function (O’Reilly et al., 1998, 2000).

The ‘‘reference’’ waveband in most empirical reflectance-

ratio chlorophyll algorithms is located inside the spectral

transparency window (¨450 to 600 nm) where light entering

the ocean penetrates the deepest. Bottom reflectance at these

wavelengths can significantly increase reflectance values

causing chlorophyll concentrations estimated using algorithms

developed for optically deep data to be overestimated (D’Sa

et al., 2002; Lee et al., 2001). Techniques for partitioning

Rrs(k) into water column and bottom reflectance spectra in

order to remove bottom contributions, therefore, are highly

desirable. Numerous such inversion techniques have been

developed (Lee et al., 1998a, 1998b, 1999; Louchard et al.,

2003; Mobley et al., 2005; Sandidge & Holyer, 1998), but

most are designed to perform optimally with hyperspectral

Rrs(k) data.
Remote-sensing reflectance spectra have been successfully

partitioned analytically using a bio-optical model parameter-

ized with measured water column optical properties, bottom

depths, and bottom albedos (Gould & Arnone, 1997). In the

absence of measured input parameters, an optimization

technique that simultaneously derives a(k), bb(k), H and

q(k) from Rrs(k) was developed by inverting a semi-analytical

reflectance model and optimizing the unknown parameters

(Lee et al., 1998a, 1998b, 1999). Look-up tables (LUT)

(Louchard et al., 2003; Mobley et al., 2005) and neural

network (Sandidge & Holyer, 1998) approaches are also used

to extract water column optical properties, bottom depths and

bottom albedos from hyperspectral Rrs(k) data.
While ocean color sensors mounted on ships, moorings,

and aircrafts can afford to be hyperspectral, satellite ocean

color sensors (e.g. SeaWiFS and MODIS) remain multi-

spectral due to data storage limitations. Satellite ocean color

sensors provide high frequency synoptic information over

large areas, thereby offering an optimal platform for long-

term monitoring of global ocean color and its derived

products (e.g. a(k), bb(k), and Chl). Inversion techniques

for partitioning remote-sensing reflectance spectra into water

column and bottom reflectance components perform less

accurately with multi-band Rrs(k) data and can be computa-

tionally expensive when applied to entire scenes (Hu et al.,

1998; Lee & Carder, 2002).

In this study, shipboard hyperspectral Rrs(k) data collected

from the west Florida shelf (WFS) and Bahamian waters are

partitioned into water column and bottom reflectance spectra

using the Lee et al. (1999) optimization technique. The

percentage contribution bottom reflectance makes to Rrs(555)
could then be calculated. These values are considered while

examining the performance of both standard and alternative

empirical band-ratio algorithms for estimating chlorophyll

concentrations from Rrs(k). A technique requiring Rrs(k) data
at only four wavebands (412, 490, 555 and 670 nm) that (1)

classifies data as optically deep or optically shallow and (2)

quantifies chlorophyll concentrations more accurately in

regions containing unknown bottom reflectance contributions

is developed. When applied to satellite ocean color data, this

technique has the potential to improve estimations of

chlorophyll concentrations in shallow oceanic waters such

as the WFS and near the Bahamas where concentrations are

typically overestimated.
2. Data and methods

Shipboard data were collected during 27 research cruises

during four major field programs between 1998 and 2001

(Table 1, Fig. 1). The Tongue of the Ocean (TOTO) (1998–

2000; n =86) and Coastal Benthic Optical Properties

(CoBOP) (1998–2000; n =105) programs were based in

Bahamian waters located in the Tongue of the Ocean and

in waters offshore of Lee Stocking Island, respectively. Data

from the WFS , Florida Straits, NW and NE Providence

Channel and Grand Bahamas Bank were collected during

transit for these programs. West Florida shelf data were also

collected as part of the Ecology and Oceanography of Harmful

Algal Blooms (ECOHAB) (1999–2001; n =224) and the
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Fig. 1. SeaWiFS quasi-true color image (16 March 2002) of the study area. Station locations (�) for the CoBOP, TOTO, FSLE, and ECOHAB cruises (1998–2001)

are shown. Generally, waters that are optically shallow (e.g. Grand Bahama Bank) appear blue–green due to high bottom reflectance contributions while optically

deep waters appear dark blue.
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Florida Shelf Lagrangian Experiment (FSLE) (2000–2001;

n =50) programs.

Absorption and backscattering measurements were made to

validate model results obtained using the optimization tech-

nique (Lee et al., 1999). Rrs(k) and Chl data were used to

examine the performance of various empirical band-ratio

chlorophyll algorithms.

2.1. Discrete surface samples

Surface water samples were collected using Niskin bottles

or buckets and were filtered immediately. Absorption spectra

due to particulates, ap(k), and detritus, ad(k), were determined

using the quantitative filter technique (Kiefer & SooHoo, 1982;

Yentsch, 1962). Measurements were made with a custom-

made, 512-channel spectral radiometer (¨350 to 850 nm,

¨2.5 nm resolution) (Bissett et al., 1997). Pigments were ex-

tracted with hot methanol (Kishino et al., 1985; Roesler et al.,

1989) from which chlorophyll a concentrations were deter-

mined fluorometrically (Holm-Hansen & Riemann, 1978).

Optical pathlength elongation was corrected using an average

of two previously reported beta factors (Bricaud & Stramski,

1990; Nelson & Robertson, 1993). Phytoplankton absorption

spectra, aph(k), were then calculated as the difference between

ap(k) and ad(k).
CDOM absorption spectra, aCDOM(k), were measured on

0.2 Am filtered surface seawater samples using a dual-beam

spectrophotometer (Perkin-Elmer\ Lambda 18). Data were

processed using methods previously described by Mueller and

Fargion (2002).

2.2. Underway surface samples

Underway measurements of backscattering were obtained

during ECOHAB cruises (2000–2001) using a Hydroscat-2

(HOBI Labs\). Measurement, calibration, and data processing

information for this instrument have been described previously
(Maffione & Dana, 1997). A spectral power function was fit to

measured backscattering values at 488 and 676 nm in order to

obtain the backscattering coefficient at 550 nm. Particulate

backscattering at 550 nm, bbp(550), was calculated from total

backscattering by subtracting the backscattering due to pure

water (Morel, 1974).

2.3. Remote-sensing reflectance

Remote-sensing reflectance spectra, Rrs(k), were measured

as

Rrs kð Þmeas ¼
Lw kð Þ
Ed kð Þ : ð1Þ

Lw(k) and Ed(k) were calculated from above-water mea-

surements of upwelling radiance, sky radiance, and the

radiance reflected from a Lambertian ‘‘graycard’’ reflector

(Spectralon\; ¨10%) using methods described previously by

Lee et al. (1997). All measurements were made using a custom-

made, 512-channel spectral radiometer (¨350 to 850 nm;

¨2.5 nm resolution).

3. Optimization technique

In order to examine how bottom reflectance influences

empirical band-ratio chlorophyll algorithms, the percentage

contribution bottom reflectance makes to the remote-sensing

reflectance at 555 nm, %bt_555, was determined. Shipboard

hyperspectral Rrs(k) data were inverted using a semi-analytical

reflectance model with separate terms for water column and

bottom reflectance. Values for aph(440), aCDOM(440), bbp(550),

q(550), and H were solved simultaneously using a predictor–

corrector optimization technique (Lee et al., 1999). Retrieved

values were then fed back into the model to calculate %bt_555.

The Rrs(k) model and optimization technique are described

briefly below.
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3.1. Semi-analytic model

Remote-sensing reflectance spectra below the air–sea

interface, rrs(k), is related to that above the sea surface as

(Lee et al., 1999)

Rrs kð Þmod:

0:5rrs kð Þ
1� 1:5rrs kð Þ ð2Þ

for a nadir-viewing sensor. This expression accounts for the

water-to-air divergence factor and internal reflection of the

water–air interface (Morel & Gentili, 1993). For brevity,

wavelength, k, shall be omitted in the following equations

unless it is necessary to include for clarity.

The subsurface remote-sensing reflectance can be separated

into water column and bottom reflectance components as (Lee

et al., 1999)

rrs , rdprs 1� exp � 1

1:2
þ DC

u

0:92

��
jH

�� ��

þ 1

p
qexp � 1

1:2
þ DB

u

0:92

��
jH

��
ð3Þ

where rrs
dp is the subsurface remote-sensing reflectance for

optically deep waters, Du
C is the optical path elongation factor

for the water column, Du
B is the optical path elongation factor

for the bottom, and j is equal to the sum of the absorption and

backscattering coefficients.

Subsurface remote-sensing reflectance for optically deep

waters is (Lee et al., 2004)

rdprs ¼ gw
bbw

aþ bb
þ gp

bbp

aþ bb
ð4Þ

where gw and gp are known model-derived parameters for

molecular and particle scattering, respectively. Separate terms

for particles and molecules are required because the angular

distribution for molecular backscattering due to water, bbw(k),
differs from that of particulate backscattering due to water.

Optical path elongation factors for the water column and

bottom are (Lee et al., 1999)

DC
u , 1:03 1þ 2:4uð Þ0:5 and DB

u , 1:04 1þ 5:4uð Þ0:5; ð5Þ

respectively, where

u ¼ bb

aþ bb
: ð6Þ

Absorption and backscattering spectra are decomposed as

a ¼ aw þ aph þ aCDOM ð7Þ

and

bb ¼ bbw þ bbp ð8Þ

where absorption due to water, aw(k), and backscattering due

to water are constant and well known (Morel, 1974; Pope &

Fry, 1997).

Terms for chlorophyll and CDOM fluorescence and water

Raman scattering are not included in this model. The water
column is assumed to be homogeneous and the bottom a

Lambertian reflector.

3.2. Model parameterization

Combining Eqs. (2)–(8) provides a model for deriving

aph(k), aCDOM(k), bbp(k), q(k) and H from Rrs(k). These terms

are parameterized below in order to reduce the number of

unknowns.

Phytoplankton absorption spectra is modeled from aph(440)

as (Lee, 1994)

aph kð Þ ¼ aph 440ð Þ)A0 kð Þ þ A1 kð Þln aph 440ð Þ
� �

2 ð9Þ

where A0(k) and A1(k) are empirically derived constants tuned

to the aph(k) data measured in this study. This function ensures

that aph(k) curvature changes appropriately with aph(440),

taking into consideration the natural variability observed in

phytoplankton pigmentation and pigment packaging (Bricaud

et al., 1995).

Absorption spectra due to CDOM is modeled from

aCDOM(440) as (Lee et al., 1999)

aCDOM kð Þ ¼ aCDOM 440ð Þexp � S k � 440ð Þð Þ ð10Þ

where S is the spectral slope. Since CDOM and detritus both

exhibit exponentially decreasing absorption with increasing

wavelength, they cannot be derived independently. Therefore,

aCDOM(k) and ad(k) are combined and an average spectral

slope (0.015 nm�1) is used (Carder et al., 1989, 1991).

Particle backscattering spectra is modeled from bbp(550) as

bbp kð Þ ¼ bbp 550ð Þ 550

k

�� Y

ð11Þ

where the reference wavelength 550 nm replaces the 400-nm

value originally used by Lee et al. (1999). The spectral shape

parameter for backscattering, Y, is estimated using an empirical

relationship from measured Rrs(443) and Rrs(490) data and

values are limited to the 0–2.5 range (Lee et al., 1999).

Bottom albedo spectra is expressed as

q kð Þ ¼ q 550ð ÞTq550 nm�normalized kð Þ ð12Þ

where q(550) is the bottom albedo coefficient at 550 nm and

q550 nm-normalized(k) is a bottom albedo spectra normalized at

550 nm for sand (Lee et al., 1999).

3.3. Model optimization

Since Rrs(750) for turbid coastal waters may not be zero,

Rin
rs(k) is defined as

Rin
rs ¼ Rmeas

rs þ D: ð13Þ

Values for aph(440), aCDOM(440), bbp(550), q(550), H and D
are then derived iteratively using a predictor–corrector

optimization scheme until difference between Rrs(k)in and

Rrs(k)mod. are minimized (Lee et al., 1999). Parameter input

values provided to the model are independent of field

measurements.
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Fig. 3. Examples of measured remote-sensing reflectance spectra (sr�1).
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4. Results

4.1. In situ chlorophyll a concentrations

In situ surface chlorophyll a concentrations (n =451)

measured during this study span three orders of magnitude

and range between 0.026 and 20.6 mg m�3 (Fig. 2). The mean

value (0.66 mg m�3) is higher than the global average

(¨0.24 mg m�3) (Gregg & Conkright, 2002) due to the high

degree of coastal proximity displayed by this data set. Based on

the oceanic provinces defined by Antoine et al. (1996), 18% of

the data are oligotrophic with chlorophyll concentrations less

than 0.1 mg m�3, 68% are mesotrophic with concentrations

between 0.1 and 1.0 mg m�3 and 14% are eutrophic with

concentrations greater than 1.0 mg m�3.

The CoBOP and TOTO data sets, collected mainly from

Bahamian waters, comprise the majority of the oligotrophic

data. Chlorophyll concentrations greater than 0.3 mg m�3

measured during these field programs were collected during

transit to and from the WFS. The FSLE data were collected on

the WFS between the 10 and 50 m isobaths and were mostly

mesotrophic. The ECOHAB data, collected on the WFS

between the 10 and 85 m isobaths, comprise almost half of

the total data set and span all three trophic realms with the

majority of data being mesotrophic. The eutrophic data for the

ECOHAB program were collected from estuarine waters

located outside of Tampa Bay or Charlotte Harbor and from

harmful algal blooms of an ichthyotoxic dinoflagellate,

Karenia brevis.

4.2. Optimization

The wide variability in magnitude and spectral shape for

remote-sensing reflectance spectra measured during this study

(Fig. 3) confirms that a number of diverse environmental
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Fig. 2. Frequency distribution for in situ chlorophyll a concentrations (mg m�3)

for the entire data set (n =451) and for each individual field program.
conditions were sampled. Reflectance peaks shift from 400 nm

for non-coastal, oligotrophic waters to ¨490 nm for highly

reflective, optically shallow, mesotrophic waters to ¨560 nm

for K. brevis-dominated, optically deep, eutrophic waters from

the WFS.

Measured remote-sensing reflectance spectra were inverted

using a semi-analytic reflectance model and values for

aph(440), aCDOM(440), bbp(550), q(550), H and D were

estimated by optimization (Lee et al., 1999). The inversion-

derived values were re-inserted into Eqs. (3)–(12) to calculate

rrs(555). The contribution that bottom reflectance makes to

rrs(555), %bt_555, was then estimated by dividing the second

term in Eq. (3) due to bottom reflectance by the total rrs(555).

Confidence in these estimates is determined based on the

ability of this technique to accurately retrieve values for

a(440), bb(550), q(550) and H. Measured absorption and

backscattering values for the various constituents (particles and

CDOM) were combined with pure water values (Morel, 1974;

Pope & Fry, 1997) to calculate total absorption coefficients at

440 nm and total backscattering coefficients at 550 nm.

Measured values were then compared to modeled values

derived using the optimization technique (Fig. 4a,b). Root

mean square errors determined on log-transformed data

(RMSElog10) for a(440) and bb(550) were only 0.105 and

0.101, respectively.

Bottom depths for waters less than 25 m with bottom

reflectance contributions at 555 nm greater than 25 and 50%

were also retrieved accurately with root mean square errors

calculated on non-log-transformed data equal to 0.18 and 0.14,

respectively (Fig. 4c). Since q(550) was not measured during

this study, the retrieval accuracy for this parameter could not be

measured. The range of modeled q(550) values (0–0.5)

observed, however, is within the range of measured and

modeled values reported previously (Decho et al., 2003; Lee et

al., 2001; Louchard et al., 2003; Werdell & Roesler, 2003).

The majority of R rs(k) data (78%) exhibits bottom

reflectance contributions at 555 nm less than 25% and is

considered ‘‘optically deep’’ in this study. Model results

indicate that 11%, 6% and 5% of the Rrs(k) data exhibit

%bt_555 values 25–50%, 50–75%, and greater than 75%,

respectively. In this study, these data are all considered

‘‘optically shallow’’. Data with %bt_555 values greater than

75% were collected from the Grand Bahamas Bank. Chloro-

phyll concentrations for these data were ¨0.1 to 0.2 mg m�3,
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bottom depths were 4–10 m, and the bottom was composed of

highly reflective (q(550)mod. ¨0.2 to 0.4) sand.

4.3. Performance of standard empirical algorithms

Relationships between measured chlorophyll concentrations

and band-ratios, Rrs(k1)/Rrs(k2), using SeaWiFS wavebands

where k1 is 412, 443, 490 or 510 nm and k2 is 555 nm are

shown in Fig. 5. Cubic polynomial regression functions were

fit to log-transformed, optically deep data with %bt_555 values

less than 25% (Table 2).

Band-ratios where k1 is 443 or 490 nm generate lower

RMSElog10 values compared to ratios where k1 is 412 or 510 nm.

Increased interference by CDOM absorption at 412 nm and the

smaller dynamic range displayed by Rrs(510)/Rrs(555) values

compared to the other band-ratios may explain this observation.

Error values for these best-fit cubic polynomial relationships
are ¨25% lower than errors calculated using modified cubic

polynomial functions with similar band-ratios (OC2-type)

developed for a large global data set assembled during the

SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM)

(O’Reilly et al., 1998). The lower errors may be explained by

the limited geographical extent displayed by the data in this

study compared to the SeaBAM data.

For chlorophyll concentrations less than ¨0.2 mg m�3, the

best-fit cubic polynomial relationships developed from the

optically deep (%bt_555<25%) data overlap the OC2-type

functions developed by O’Reilly et al. (1998) (Fig. 5)). For

chlorophyll concentrations greater than ¨0.2 mg m�3,

optically deep reflectance ratios measured in this study are

generally lower per unit chlorophyll compared to the OC2-type

functions. This most likely is due to elevated CDOM-to-

chlorophyll ratios observed on the WFS (Cannizzaro et al.,

in press).

Applying the best-fit cubic polynomial functions developed

from the optically deep data to the entire data set results in

significant overestimations in chlorophyll concentrations for

optically shallow waters (Fig. 5e–h). Statistical analyses

performed on log-transformed data indicate high y-intercepts

and low coefficients of determination (r2) (Table 3). RMSElog10

values are ¨35% to 45% higher when the functions are applied

to the entire data set compared to the optically deep data only.

For chlorophyll concentrations between¨0.1 and 0.5mgm�3

where bottom reflectance contributions at 555 nm are greater than

50%, Rrs(k1)/Rrs(555) values are generally lower per unit

chlorophyll compared to the optically deep data (Fig. 5).

Relationships between Chl and Rrs(k) for SeaWiFS wavebands

(412, 443, 490, 510, 555, and 670 nm) are compared to cubic

polynomial relationships determined for the SeaBAM data

(Fig. 6) in order to determine why optically shallow reflectance

ratios are relatively low.

Greater than 98% of the SeaBAM Rrs(k) data occur within a

factor of 2 of the SeaBAM best-fit cubic polynomial functions

for Rrs(412)–Rrs(555) and within a factor of 5 for Rrs(670). The

increased scatter exhibited by Rrs(670) data can be attributed to

poor signal-to-noise since pure water absorption at 670 nm is

¨7 times higher than at 555 nm (Pope & Fry, 1997).

Optically deep (%bt_555<25%) reflectance values for

chlorophyll concentrations less than ¨0.2 mg m�3 are tightly

coupled about the best-fit SeaBAM relationships (Fig. 6) and

approach clear water radiance values (Eplee & McClain, 2000).

Optically deep reflectance values for chlorophyll concentra-

tions greater than ¨0.2 mg m�3 exhibit increased scatter and

pronounced deviations above the SeaBAM relationships. The

highly reflective, chlorophyll-rich (>0.5 mg m�3) data were

collected from high-backscattering, WFS coastal waters. The

less reflective, chlorophyll-rich data were collected primar-

ily from WFS K. brevis blooms that exhibit relatively

low backscattering-to-chlorophyll ratios (Cannizzaro et al.,

in press).

Optically shallow (%bt_555>25%) data with chlorophyll

concentrations between ¨0.1 and 0.5 mg m�3 exhibit

increased reflectivity compared to both the optically deep data

and the SeaBAM best-fit function (Fig. 6). Deviations
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exhibited by these data above the SeaBAM best-fit cubic

polynomial functions are lowest for wavebands located outside

the spectral transparency window (¨450 to 600 nm), Rrs(412)

and Rrs(670), and increase gradually from Rrs(443) to Rrs(555).

Remote-sensing reflectance values at 555 nm within the

spectral transparency window are influenced the most by

bottom reflectance. Data with bottom reflectance contributions

at 555 nm 50–75% and >75% are ¨3 and 10 times higher,

respectively, than optically deep data with similar chlorophyll

concentrations (Fig. 6e).

The tendency for Rrs(555) values to increase with increasing

bottom reflectance contributions at a faster rate than all the

other wavebands explains why optically shallow Rrs(k1)/
Rrs(555) ratios are relatively low compared to optically deep

data. Since chlorophyll concentrations derived empirically in

optically shallow waters using traditional blue-to-green band-

ratio algorithms developed for optically deep data are over-

estimated (Fig. 5), an alternative band-ratio was sought to

estimate chlorophyll concentrations more accurately in shallow
Table 2

Cubic polynomial regression coefficients derived empirically between log-

transformed chlorophyll a concentrations and band-ratios, Rrs(k1)/Rrs(k2) (or

R) where k1 is 412, 443, 490, and 510 nm and k2 is 555 and 670 nm, for data

with bottom reflectance contributions at 555 nm less than 25% (n =350):

log(Chl)=a0+a1log(R)+a2log(R)
2+a3log(R)

3

Band-ratio a0 a1 a2 a3 RMSElog10

Rrs(412)/Rrs(555) �0.2278 �1.0446 0.8278 �0.9923 0.165

Rrs(443)/Rrs(555) �0.1918 �1.2828 1.4693 �1.8599 0.139

Rrs(490)/Rrs(555) 0.0597 �2.2291 2.6691 �3.4144 0.134

Rrs(510)/Rrs(555) 0.0865 �2.5845 4.1442 �20.5183 0.181

Rrs(412)/Rrs(670) 0.8840 �2.0837 1.3061 �0.3906 0.177

Rrs(443)/Rrs(670) 1.1578 �2.5984 1.6643 �0.4915 0.167

Rrs(490)/Rrs(670) 2.0115 �4.4879 3.3022 �1.0101 0.205

Rrs(510)/Rrs(670) 2.1981 �4.5871 3.2467 �1.1119 0.249
oceanic waters containing significant bottom reflectance

contributions.

The relationship between chlorophyll concentrations and

Rrs(670) indicates that Rrs(670) is less sensitive to increas-

ing bottom reflectance contributions compared to Rrs(555)

(Fig. 6e,f). Therefore, relationships between chlorophyll

concentrations and the same four band-ratios as in Fig. 5

are examined except k2=555 nm is replaced by k2=670 nm

(Fig. 7). Cubic polynomial regression functions were fit to the

log-transformed, optically deep data with bottom reflectance

contributions at 555 nm less than 25% (Table 2).

RMSElog10 values were 7–35% higher when applying the

best-fit Rrs(k1)/Rrs(670) functions to the optically deep data

only compared when the best-fit Rrs(k1)/Rrs(555) functions

were applied (Table 2). Applying these best-fit functions to
bottom reflectance contributions at 555 nm less than 25% when applied to the

entire data set (n =451) (all statistics calculated on log-transformed data)

Band-ratio Slope y-intercepts r2 RMSElog10

Rrs(412)/Rrs(555) 1.044 0.107 0.69 0.302

Rrs(443)/Rrs(555) 1.015 0.078 0.78 0.251

Rrs(490)/Rrs(555) 1.011 0.058 0.80 0.233

Rrs(510)/Rrs(555) 1.081 0.085 0.74 0.277

Rrs(412)/Rrs(670) 1.006 �0.006 0.84 0.201

Rrs(443)/Rrs(670) 1.042 �0.011 0.83 0.216

Rrs(490)/Rrs(670) 1.314 0.058 0.59 0.434

Rrs(510)/Rrs(670) 1.566 0.122 0.41 0.627

Blenda 1.005 �0.005 0.88 0.172

a Data were classified as optically deep, optically shallow or transitional

based on relationship between Rrs(412)/Rrs(670) and [Rrs(412)*Rrs(670)]/

Rrs(555)
2. Chlorophyll concentrations were derived using Chldeep for optically

deep data, Chlshallow for optically shallow data, and a weighted blend of these

derived values for transitional data.
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the entire data set, the lowest error value for all the individual

band-ratios examined was generated using Rrs(412)/Rrs(670)

(RMSElog10=0.201) (Table 3). This value was 14% lower

than the lowest error generated using the Rrs(k1)/Rrs(555)

best-fit cubic polynomial functions indicating that chlorophyll

concentrations in optically shallow waters are more accurately

derived using Rrs(412)/Rrs(670) compared to using traditional

blue-to-green band-ratios (e.g. Rrs(490)/Rrs(555)).

4.4. Development of classification and quantification

techniques

While chlorophyll concentrations are estimated most accu-

rately from Rrs(412)/Rrs(670) for a data set containing 78%

optically deep and 22% optically shallow data, concentrations

for optically deep data only are estimated 24% less accurate-

ly from Rrs(412)/Rrs(670) compared to Rrs(490)/Rrs(555)

(Table 2). One approach for optimizing algorithm performance

in environments containing unknown bottom reflectance con-

tributions is to first classify the data as optically deep or opti-

cally shallow. Chlorophyll concentrations can then be derived

for optically deep data using the best-fit Rrs(490)/Rrs(555)
cubic polynomial function (or Chldeep) and for optically shal-

low data using the best-fit Rrs(412)/Rrs(670) cubic polynomial

function (or Chlshallow). In order to prevent switching artifacts

from occurring (Müller-Karger et al., 1990), chlorophyll

concentrations for so-called ‘‘transitional’’ data can be calcu-

lated from a blend of these derived values.

One of the greatest challenges for using such an approach is

to be able to determine remotely whether a given data point or

pixel is optically deep or optically shallow. One possible

strategy for classifying data in terms of bottom reflectance

contributions that is based on earlier observations and requires

Rrs(k) data at only three wavebands (412, 555, and 670 nm) is

introduced in Fig. 8. The band-ratio Rrs(412)/Rrs(670) provides

a surrogate for chlorophyll concentration with low ratios

indicative of high concentrations and high ratios indicative of

low concentrations (Fig. 7a). Recall that the majority of

optically shallow data for this data set exhibit Rrs(412)/

Rrs(670) values greater than ¨10 and chlorophyll concentra-

tions less than ¨0.5 mg m�3. The spectral curvature about

Rrs(555), [Rrs(412)*Rrs(670)]/Rrs(555)
2 (or CURVE), provides

an indicator of bottom reflectance contribution. Since Rrs(412)

and Rrs(670) values are typically only mildly influenced by
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bottom reflectance and Rrs(555) values are highly perturbed by

bottom reflectance (Fig. 6), CURVE values decrease as bottom

reflectance contributions increase.

In order to classify the shipboard Rrs(k) data in this study as

optically shallow, optically deep or transitional, the following

classification criteria were developed (Fig. 8). A quadratic

polynomial regression function was fit to the log-transformed

optically deep data with %bt_555 values less than 25%:

log(CURVE) =�1.22 + 0.40log(R rs(412)/R rs(670)) + 0.04

log(Rrs(412)/Rrs(670))
2. Dividing this best fit function by

various factors (0.25, 0.5, 1, 1.5, 3, 6, and 12), parallel

relationships were generated above and below the best-fit line

to provide several possible combinations of so-called ‘‘upper’’

and ‘‘lower’’ threshold functions.

Data located above the upper threshold function and below

the lower threshold function were classified as optically deep
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polynomial regression function (solid) was fit to log-transformed optically deep

(%bt_555<25%) data: log(CURVE)=�1.22+0.40log(R)+0.04log(R)2. The

best-fit function was divided by 0.5 and 6.0 to generate the upper and lower

threshold functions (dashed), respectively. Using these threshold functions, the

lowest RMSElog10 value between measured and modeled chlorophyll a

concentrations was calculated using the new blending technique.
and optically shallow, respectively. Chlorophyll concentrations

for these data were derived using Chldeep and Chlshallow,

respectively (Table 2). A weighting factor, w, equal to

w ¼ CURVEmeas � CURVElower

CURVEupper � CURVElower

ð14Þ

was calculated for each transitional data point located between

the upper and lower threshold functions where CURVEmeas is

the measured curvature value, CURVElower is the curvature

value calculated using the lower threshold function, and

CURVEupper is the curvature value calculated using the upper

threshold function. Blended chlorophyll concentrations were

then derived for transitional data as

Chl ¼ w Chldeep
� �

þ 1� wð Þ Chlshallowð Þ: ð15Þ

All possible combinations of upper and lower threshold func-

tionswere tested until the lowest error value (RMSElog10=0.172)

was attained (Fig. 9). This value was achieved using upper and

lower threshold functions generated by dividing the best-fit

quadratic polynomial function by the factors 0.5 and 6.0,

respectively (Fig. 8).

The error value calculated using this new classification and

quantification technique (RMSElog10=0.172) was 14% lower

than the error value obtained when concentrations were

determined using the best individual band-ratio, Rrs(412)/

Rrs(670). This error was 26% lower than the error calculated

when concentrations were estimated using the traditional blue-

to-green band-ratio, Rrs(490)/Rrs(555), also employed by the

O’Reilly et al. (1998) OC2 algorithm. Using this approach,

overestimations in chlorophyll concentrations for optically

shallow waters derived from Rrs(490)/Rrs(555) and increased

scatter for optically deep chlorophyll concentrations derived

from Rrs(412)/Rrs(670) that were previously observed (Figs. 5g

and 7e) were reduced.
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5. Discussion

Empirical algorithms based on spectral band-ratios esti-

mate chlorophyll a concentrations accurately and efficiently

in most oceanic waters provided that phytoplankton dominate

the optical properties and bottom reflectance is negligible (i.e.

Case 1 waters) (Gordon et al., 1983; O’Reilly et al., 1998,

2000). For this reason, chlorophyll concentrations derived

from satellite ocean color data collected by past (e.g. CZCS)

and currently operational (e.g. SeaWiFS and MODIS) ocean

color sensors are estimated using empirical algorithms. More

complicated semi-analytic algorithms for deriving chlorophyll

concentrations from coastal waters where non-biogenic optical

properties (CDOM and detritus) do not co-vary with that of

phytoplankton have also been developed (Carder et al., 1999).

Both algorithm types, however, will overestimate chlorophyll

concentrations in optically shallow waters if light reflected by

the bottom is not removed prior to the algorithm being

applied (Lee et al., 2001). While several inversion techniques

(Lee et al., 1998a, 1998b, 1999) have been developed that are

capable of retrieving bathymetry and bottom albedo from

hyperspectral Rrs(k) data, water column optical properties

including Chl are retrieved less accurately. Also, since these

techniques perform optimally with hyperspectral data and can

be computationally expensive (Lee et al., 1998a, 1998b), they

are less suitable for routine application to large multi-spectral

satellite scenes.

In this paper, a method is developed for quantifying

chlorophyll concentrations more accurately in oceanic regions

containing unknown bottom reflectance contributions. The

method is computationally efficient and requires Rrs(k) data at
only four wavebands (412, 490, 555, and 670 nm). These or

similar wavebands are currently available for several opera-

tional satellite ocean color sensors (SeaWiFS, MODIS, and

MERIS). Estimations of other inherent optical properties (e.g.

aph(k), aCDOM(k), and bbp(k)) may also be possible using the

classification criteria developed in this study if empirical

algorithms can be developed for these variables using wave-

bands less influenced by bottom reflectance.

Using this technique, data are first classified as optically

shallow, optically deep, or transitional based on criteria

developed for the relationship between the band-ratio

Rrs(412)/Rrs(670) and the spectral curvature about Rrs(555),

[Rrs(412)*Rrs(670)]/Rrs(555)
2. Chlorophyll concentrations for

data classified as optically deep are calculated from Rrs(490)/

Rrs(555) using a cubic polynomial function developed in this

study for data with bottom reflectance contributions at 555

nm less than 25%. An alternative empirical algorithm for data

classified as optically shallow based on the band-ratio

Rrs(412)/Rrs(670) is developed from the %bt_555 less than

25% data. The logic behind using Rrs(412)/Rrs(670) instead of

Rrs(490)/Rrs(555) for optically shallow waters is that Rrs(412)

and Rrs(670) are typically located outside of the spectral

transparency window and influenced less by bottom reflec-

tance. Algorithm switching artifacts are avoided by using a

weighted blend of chlorophyll concentrations derived by both

band-ratio algorithms for data classified as transitional.
While this technique may be applied immediately to

shipboard and mooring data collected from the WFS and

Bahamas, the success of this technique when applied to

satellite-based ocean color data (e.g. SeaWiFS, MODIS) will

rely on the radiometric accuracy of the sensor and proper

atmospheric corrections of the imagery (McClain et al., 2000).

Because corrections for aerosol reflectance are determined for

infrared wavebands and then extrapolated using models to blue

wavebands (Gordon & Wang, 1994), normalized water-leaving

radiance values at 412 nm are more difficult to measure from

space compared to radiance values at redder wavebands. Also,

since pure water absorption is ¨7 times higher at 670 nm

compared to at 555 nm, nLw(670) values are difficult to

measure due to the low signal-to-noise. Consequently, slight

modifications to the classification criteria and empirical

algorithms may be required when switching from shipboard

to satellite Rrs(k) data.
The overall methodology developed in this paper may be

applied to other oceanic regions besides the WFS and Bahamas

that are influenced by bottom reflectance. However, the

empirical algorithms and classification criteria may have to

be adjusted regionally taking into account local aCDOM(k) to
aph(k) ratios. Due to the numerous rivers that outflow onto the

WFS and the shallow nature of the shelf itself, CDOM-to-

phytoplankton absorption ratios can exceed those observed for

typical Case 1 waters and may differ for other regions. Since

CDOM and phytoplankton both absorb blue light strongly,

increases in blue-to-green absorption ratios due to increased

CDOM result in decreases in blue-to-green reflectance ratios

that can be mistaken for higher chlorophyll concentrations

(Sathyendranath et al., 2001).

The multi-year, multi-season data set examined in this study

was collected from many different oceanic environments on the

WFS and from Bahamian waters. A wide range of chlorophyll

concentrations (0.026 to 20.6 mg m�3), bottom depths (3.6 to

>1000 m), and bottom albedos (0<q(550)mod.<0.5) were

observed. Every possible combination of a(k), bb(k), q(k)
and H that naturally occurs, however, is not represented.

Also, bottom types including seagrass and coral reefs,
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vertically stratified water columns, and highly reflective

coccolithophore (Balch et al., 1991) and Trichodesmium

spp. (Subramaniam et al., 2002) blooms were not examined.

Such conditions may not be classified or quantified accurately

using this technique.

In order to determine the conditions under which the

classification technique developed in this study may fail, a

broad, robust library of synthetic Rrs(k) data generated for a

wide range in chlorophyll concentrations, bottom depths and

bottom albedos was examined (Carder et al., 2005). The

results indicate that waters shallower than 5 m will be

misclassified as optically deep using the classification

criteria developed for the shipboard data in this study.

Since reflectance data at 412 and 670 nm in such shallow

waters are no longer outside the spectral transparency

window, these data must be classified as optically shallow

using additional criteria. Either a bathymetric flag or the

addition of an absolute threshold criteria for Rrs(555) above

which waters are to be automatically classified as optically

shallow are possibilities. It is very unlikely, however, that

accurate chlorophyll concentrations can be retrieved from

such shallow waters given that the water column reflectance

signal is so low compared to the bottom reflectance signal.
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