

Overview of the HICO Instrument

HICO Users' Meeting

Bob Lucke Naval Research Lab

February 22, 2011

HICO Build Schedule

- Requirements Finalized, Mechanical Design Begun in June 2007
- CDR in November 2007
- Hardware Build and Vibration Testing Complete July 2008
- Optical Calibration and Characterization August 2008
- Delivery for Integration into HREP September 2008
- HICO had to Meet NASA Manned Spacecraft Specifications
- Software had to Interface to NASA Systems and be Simple
- COTS Parts Used to Maximum Extent Possible
 - Camera, Spectrometer, Rotator
 - All Non-COTS Parts Are Straightforward Machine Work
 - PC-104 Computer, Windows OS for Camera Drive Software

Thermal Design Issue

Thermo-Electric Cooler in Camera Needs ≈ 80 wt Power

- Continuous Operation Would Require Heat Pipe to Remove Power, Not Within Program resources
- Camera's Duty Cycle < 1%</p>
- Cooler NOT Used, CCD Temperature NOT Constant
- One Scene Observation:
 - 200 dark frames, 8 min interval, 2,000 scene frames, 8 min interval, 200 dark frames
 - CCD warms during frame acquisition, cools during intervals
 - Dark Count Rate Changes
- Special Data Processing Required to Correct

Correcting Dark Counts

- Left figure shows 1 pixel's output for 200 dark, 2,000 scene, 200 dark frames
- Right figure shows dark count subtraction
- Smooth curve is theoretical fit: use dark frame fits to infer dark counts in scene

HICO

Back View of Assembly

HICO in HREP

HICO Program

- HICO has Operated Successfully for 1 yr & 5 mo to Date
- Designed for 1 3 year Mission
- 2700 Images Returned so far
- Minor Optical Alignment Effects from Launch
 - Image Shifted Slightly \Rightarrow Small Change in Wavelength Calibration
 - Focus Still Sharp
 - On-Orbit Radiometric Calibration Not Same as Laboratory
 - Sensitivity Loss $\approx 25\%$, Cause Unknown
 - (So Signal is 3/4 of Expected Value, Multiply by 4/3 to Correct)
- Mechanical Functioning has been Perfect
- Computer Locks Up Twice a Week on Average
 - Typical Rate on ISS for PC104 Running Windows OS

Newport, Oregon

Kerch Strait, between Black Sea (bottom) and Sea of Azov (top)

Namibia Desert

Makemo, French Polynesia

Barreal Blanco, Argentina

Ocean Internal Waves

- Ocean internal waves in HICO imagery
- Packets of large-amplitude ocean internal waves (IWs) occur in many littoral areas
- Important for vertical mixing and in acoustic variability
- Observed in SAR and sunglint imagery because IWs spatially modulate sea-surface roughness
- Recent studies suggest IWs also appear in ocean color imagery by modulating the chlorophyll maximum layer

Bahamas with contrast stretch shows low-level artifacts

History Lesson

WE'VE INVENTED IT, SAM!

In WWII, photographic aerial reconnaissance couldn't determine the water depth and bottom type of the approaches to a beach, so swimmers had to be trained to gather intelligence on near-shore conditions before an invasion. Addressing this point, naval historian Samuel Eliot Morison wrote

Among the many lessons learned at Tarawa^{*} was the need for close pre-landing reconnaissance of beaches and their approaches, since no photographic process yet invented could indicate depth of water.

- History of United States Naval Operations in World War II, vol. VIII, p. 166

*The presence of a coral reef around Tarawa was known, but in the invasion many of the landing craft and amphibious vehicles couldn't cross it and Marines had to wade ashore through chest-deep water in the teeth of the Japanese machine guns. Hundreds died.

Back-Up Slides

Tested QImaging Rolera-MGi camera:

- Measured conversion gain (26 e⁻ / DN)
- Measured pixel well depth (150 ke⁻⁾
- Measured binning register well depth (>400 ke⁻)
- Measured noise level (3.3 DN)
- Confirmed desired on-chip binning (3 V x 1 H)
- Confirmed readout rate at desired Region of Interest
- Confirmed linearity over desired range
- Confirmed operation with cryocooler disabled
- Confirmed stability under intermittent operation
- Wrote C++ code to operate camera
- Quantum efficiency not measured
- Selected all camera operating parameters

Commercial Spectrometer

- Selected Brandywine Photonics model 3035 Spectrometer
- Offner spectrometer, high-efficiency grating
- Athermalized

Brandywine Optics 3035 spectrometer (two shown)

Commercial Pointing Mechanism

- One-dimensional rotary mechanism to point HICO line of sight in cross-track direction
- Newport Research model RV120PEV6 rotation stage
- Vacuum compatible

HICO

• Two units purchased: flight and spare

