

Ocean Products and Atmospheric Removal in APS

David Lewis Oceanography Division Naval Research Laboratory Stennis Space Center, Mississipp david.lewis@nrlssc.navy.mil

Contributors: David Lewis¹, Richard Gould, Jr.¹, Adam Lawson¹, Sherwin Ladner¹, Zhongping Lee², Paul Martinolich³, Ronnie Vaughan³, Samir Ahmed⁴, Alex Gilerson⁴, Tristan Harmel⁴, Giulietta Fargion⁵

¹Naval Research Laboratory, ²Mississippi State University, ³QinetiQ-NA, ⁴City College of New York, ⁵CHORS-SDSU

February 22, 2011

Outline

1. Data Processing in the Automated Processing System (APS)

- 2. HICO processing streams in APS
- 3. Vicarious Calibration in APS
- 4. HICO APS Data Products
- 5. HICO APS Data Processed through HOPE Algorithm
- 6. Summary

Automated Processing System (APS)

The Automated Processing System (APS) is a collection of UNIX programs and shell scripts designed to generate regional map-projected image data bases of satellite derived bio-optical products from a large flow of raw satellite input data in an automated fashion.

- Consistent with standard NASA processing code (SeaDAS 6.1) for SeaWiFS, MODIS, MERIS.
- Addition of Navy-specific algorithms and products (absorption, backscattering coefficients, diver visibility).
- No graphical user interface.
- Multiple platforms (Linux RH 7.1,RH 7.3/SGI IRIX 6.5).
- An SQL database is populated (web browsing).

APS Development

- Developed at NRL/Stennis
- Handles multiple satellites, algorithms, regions-of-interest
- Multiple input streams: NRL receiving system, NOAA, NASA real time and archival data (global)
- Adding new products, sensors (euphotic depth, MERIS, HICO)
- Architecture in place to easily test algorithms, reprocess large imagery data bases

- weekly, monthly composites
- data files
- browse imagery

Data Transformation in APS

- Individual scenes are sequentially processed from the raw digital counts (Level-1) to radiometrically, atmospherically, and geometrically corrected (Level-3) products within several minutes.
- Data processed into several temporal (daily, 8-day, monthly, and yearly) composites or averages (Level-4).
- Quick-look "browse" images (PNG) are automatically generated and stored on a web.
- The Level-3 and Level-4 data (HDF v4) are archived in a directorybased data base that resides on a 40TB RAID array.

APS Processing Steps

Ocean Color Imagery

Multi-Year Image Archive

SeaWiFS - 1km, daily, 1997-present MODIS - 250m, 500m and 1 km, daily, 2002-present OCM – 350m, 8 bands MERIS – 1km (300m), 15 bands

Processed With Consistent Algorithms

Daily, Weekly, Monthly Bio-Optical Properties 1 km resolution

- Radiances, Reflectances
- Chlorophyll
- Partitioned Absorption Coefficients (detrital, sediment, CDOM, and phytoplankton)
- Backscattering Coefficient
- Diffuse, Beam Attenuation Coefficients
- Suspended Particulate Concentrations (total, organic, inorganic)
- Euphotic Depth
- Diver Visibility

Outline

1. Data Processing in the Automated Processing System (APS)

2. HICO processing streams in APS

- 3. Vicarious Calibration in APS
- 4. HICO APS Data Products
- 5. HICO APS Data Processed through HOPE Algorithm
- 6. Summary

HICO Processing Activity in APS

MODIS-like (Multispectral) HICO Data Creation

- Perform convolution over 412, 443,488, 531, 547, 667,678,748, 869 nmeter MODIS Aqua spectral response
- Generate 9 band data set and store within simple format and also envi file format
- Write data readers for APS to ingest data into APS
- Process according using usual MODIS processing algorithms
- Compare products to MODIS derived products

Outline

- 1. Data Processing in the Automated Processing System (APS)
- 2. HICO processing streams in APS
- 3. Vicarious Calibration in APS
- 4. HICO APS Data Products
- 5. HICO APS Data Processed through HOPE Algorithm
- 6. Summary

Vicarious Calibration Option in APS

- Purpose is to fit nLw computed by APS to in situ data
 - Sensor gains/offsets unique for NIR atmospheric correction of APS
 - Also unique to parameters used (designated wavelengths, etc)
- Forward atmospheric correction computation
 - Perform standard atmospheric correction over in situ site
 - Store rayleigh/aerosol radiances and absorption terms
 - Compute normalized water leaving radiance (nLw)
- Inversion of atmospheric correction
 - Substitute in situ (nLw) into level 2 nLw record
 - Add computed atmospheric terms to in situ nLw to get vicarious Lt
 - Vicarious Lt is the Lt value needed to compute in situ nLw
 - Store original Lt and vicarious Lt values
- Linear regression over sample sites generates sensor gains/offsets

Vicarious Calibration Activity

- Multispectral (MODIS-Like) HICO Data
 - 7 Aeronet sites (Seaprism data) included AAOT, LISCO, LJCO locations from 12/10/09 to 10/02/10
 - Seaprism data interpolated for MODIS 531nm and 678nm bands
- Hyperspectra Data
 - 3 LISCO (Hypersas) dates included from Sep/Oct 2010
 - Hypersas data interpolated to HICO wavelengths
- Common processing
 - vLt values computed by APS inverse atmospheric correction
 - Measured Lt and vLt stored
 - Vicarious gains and offsets set by linear regression of Lt to vLt

Vicariously Calibrated Gain/Offset Values

Multispectral Vicarious Gain Validation

- Data reprocessed with new sensor gain/offsets
- APS processed HICO spectral overlaid on in situ data for comparison

Hyperpectral Vicarious Gain Validation

- Data reprocessed with new sensor gain/offsets
- APS processed HICO spectral overlaid on in situ data for comparison

Vicarious Calibration Activity Summary

- 7 MODIS-like HICO (9 band) scenes in multispectral study
- 3 HICO scenes in hyperspectral study
- In Situ AERONET data used to compute vicarious Lt values
- Linear regression between HICO measured Lt and vicarious Lt values used to set gains and offsets
- Scenes reprocessed with new gains/offsets to determine new nLw at AERONET location
- Results unique to APS atmospheric correction inputs

Outline

- 1. Data Processing in the Automated Processing System (APS)
- 2. HICO processing streams in APS
- 3. Vicarious Calibration in APS

4. HICO APS Data Products

- 5. HICO APS Data Processed through HOPE Algorithm
- 6. Summary

Hong Kong, 2 October 2009

b_b (488)

Laboratory Center MS 18

true_color Sensor Fram

Code 1330/Ocean Sciences Naval Research Laboratory Stennis Space Center, MS

Hong Kong: 10/02/09: HICO Products over Google Earth Background

Hong Kong, 2 October 2009

014 0.38 mg m²-3 1.1 2.3 ACD ECLORE ■ATMFAG. and gravisional) sar Frame Value Presench Laboratory Navel Research Laboratory Sterviss Space Center. MS

K_d (4888)

1 0.15 0.23 m⁴·1 0.35 0.1 ELAND ■ CLDCE ■ ATMFAR dc_4BL_let grevisional) lensor Frame Naval Research Laboratory Sterners Space Center, MS

Code 7330/Ocean Sciences Naval Research Laboratory Stennis Space Center, MS

a (443)

00.41 03.2009 iss 2000-375 tot

0.032 0.05 m⁴.1 0.06 1 LAND (ELDICE) ATMFAL Lellin, gas (primisional) Insize France New Hencarch Laboratory Sterniss Space Center, MS

ie_color inser Frame

Code 7330/Ocean Science Naval Research Laboratory Stennis Space Center, MS

aval Research Laborator ennis Space Center, MS

Pusan, Korea, 18 November 2009

Chesapeake Bay: 10/07/09: Diffuse Attenuation

Ka_488_lee (provisional)

CLDICE

FAI

Coae 73300ce

Riverine Support

k490 Penetration depth For Hydrographic LIDARS (CHARTS)

K490

Target Vulnerability

Chesapeake Bay: 10/07/09: Backscatter @ 531nm (QAA)

HICO Image – Bahrain 10/02/09

New Hyperspectral Capabilities for extracting bathymetry

Outline

- 1. Data Processing in the Automated Processing System (APS)
- 2. HICO processing streams in APS
- 3. Vicarious Calibration in APS
- 4. HICO APS Data Products
- 5. HICO APS Data Processed through HOPE Algorithm
- 6. Summary

1. Some basics of HOPE

(Hyperspectral Optimization Process Exemplar)

HOPE Algorithm $R_{rs}(\lambda) = F[a(\lambda), b_b(\lambda), \rho(\lambda), H]$

Explicit Analytical Function

$$u = bb/(a+bb), \quad k = a+bb \qquad D_0 \approx 1/\cos(\theta_{sun})$$

a: a_w – pure water a_{ϕ} – phytoplankton pigments a_g – gelbstoff/detritus

$$b_b$$
: b_{bw} – pure water/molecules
 b_{bp} – particles

(Lee et al 1998, 1999, from Hydrolight runs)

Have to know the spectrum shapes for analytical derivation!

Global default parameterization:

(no access to local information, e.g. Iran, North Korea)

1. Pigment absorption spectrum

$$a_{\phi}(\lambda) = (a_0(\lambda) + a_1(\lambda)\ln(\mathbf{P}))\mathbf{P}$$

$$P = a_{\phi}(440)$$

 $a_0(\lambda)$ and $a_1(\lambda)$ values are available (*Lee*

Global default parameterization (cont.):

2. CDOM absorption spectrum

$$a_g(\lambda) = \mathbf{G} \, e^{-0.015(\lambda - 440)}$$

3. Particle backscattering spectrum

$$b_{bp}(\lambda) = X\left(\frac{555}{\lambda}\right)^{Y}$$

$$Y \approx 2.2 \left(1 - 1.2 e^{-0.9 \frac{r_{rs440}}{r_{rs555}}} \right)$$

 $G = a_{q}(440)$

Global default parameterization (cont.):

4. Bottom reflectance spectrum

$$\rho(\lambda) = B * \rho_{bott}^{+}(\lambda) = \rho(\lambda)/\rho(550), \text{ spectral curvature of bottom reflectance}$$

Selection criterion:

If $\text{Rrs}(550) < 0.01 \text{ sr}^{-1}$ <u>and</u> Rrs(710)/Rrs(670) > 1.2, Grass bottom is assumed;

Otherwise, sandy bottom is assumed.

(Less computation time; less ambiguity)

 $R_{rs}(\lambda) = F(P, G, X, B, H)$

Or

 $R_{rs}(\lambda_1) = \mathsf{F}(P, G, X, B, H)$ $R_{rs}(\lambda_2) = \mathsf{F}(P, G, X, B, H)$

 $R_{rs}(\lambda_n) = F(P, G, X, B, H)$

5 unknowns for each $R_{rs}(\lambda)$ spectrum!

Error function:

$$err = \frac{\left[\sum_{400}^{675} \left(R_{rs} - \hat{R}_{rs}\right)^{2} + \sum_{750}^{800} \left(R_{rs} - \hat{R}_{rs}\right)^{2}\right]^{0.5}}{\sum_{400}^{675} \hat{R}_{rs} + \sum_{750}^{800} \hat{R}_{rs}} = f(P, G, X, B, H)$$

P, *G*, *X*, *B* and *H* are derived when *err* reaches a minimum (HOPE).

Initial values for HOPE:

$$P = 0.05 (Rrs(443)/Rrs(555))^{-1.7}$$

$$X = 8 Rrs(660)$$

$$B = 4 Rrs(490)$$

H = 1/(6.5 P)

Key Largo HOPE Bathymetry Estimation using HICO

Key Largo 11/13/2009

HICO Image - Key Largo, Florida: 11/13/09

Summary

- MODIS-Like (multispectral) data set is convolved from MODIS SRF and full hyperspectral HICO data set
- APS has been modified to process multispectral and hyperspectral HICO data
- Vicarious Calibration activity is being explored to refine Level 1B data to APS atmospheric correction method
- APS processed HICO data when received at NRL-SSC
- HICO APS has been processed through HOPE algorithm for parameters including bathymetry