

Ocean Biology and Biogeochemistry: Our Science I

Seasonality in Marine Organic Carbon Export and Sequestration Pathways

Renjian Li and Tim DeVries University of California, Santa Barbara

Biological Pump Pathways

CO2

Model Implementation

Data Constrains		
surface phyto biomass	climatological- monthly	
depth-integrated zoo biomass	climatological- monthly	
DOC concentration	climatological- monthly	
O ₂ concentration	climatological- monthly	
magnitude of POC flux	annual mean	
magnitude of migrant flux	transient observation	

Model Performance

Month

Seasonal Cycles of Carbon Export Pathways

Seasonal Cycles of Carbon Sequestration Pathways

Comparison with Annual-Mean Model

Comparison with Annual-Mean Model

Take-Home Message

- A new data-assimilated model has been developed to simulate the climatologically monthly biological pump pathways.
- Carbon export and sequestration show strong seasonality in high-latitude regions, driven by seasonal blooms and winter convection.

• Compared with previous annual model, including seasonality of ocean environment leads to similar estimates on global total carbon export and sequestration, with relatively larger influence on sequestration.

The NASA BlueFlux-II campaign: quantifying carbon fluxes along the E ARTH SCIENCES blue carbon land ocean-aquatic continuum Ben Poulter

NASA Goddard Space Flight Center Earth Sciences Division Biospheric Sciences Lab.

BlueFlux Project Overview

Research Team: Benjamin Poulter¹, Frannie Adams², Cibele Amaral³, Abigail Barenblitt¹, Anthony Campbell¹, Sean P. Charles⁴, Rosa Maria Roman-Cuesta⁵, Rocco D'Ascanio², Erin Delaria¹, Cheryl Doughty¹, Temilola Fatoyinbo¹, Jonathan Gewirtzman², Thomas F. Hanisco¹, Moshema Hull², S. Randy Kawa¹, Reem Hannun⁶, David Lagomasino⁴, Leslie Lait¹, Sparkle Malone^{7,2}, Paul Newman¹, Peter Raymond², Judith Rosentreter^{2, 9}, Nathan Thomas¹, **Glenn M. Wolfe¹**, Lin Xiong⁴, Qing Ying⁹, Zhen Zhang⁹

BlueFlux-I key results

 Complex patterns in landscape processes (Coastal Everglades Restoration Plan, sea-level rise, hurricane damage, prescribed fire) impacting trends and inter-annual variability in carbon dioxide and methane emissions
MODIS-based reflectance model provides daily, 500-meter perspective on vertical fluxes of GHGs

BlueFlux-II & the Land Aquatic Ocean Continuum (LOAC)

- Blue carbon refers to long-term carbon burial & sequestration
 - LOAC fluxes removed 9-30% of net ecosystem production measured by aircraft and tower

A) Wet Season

B) Dry Season

- BlueFlux-II will refine LOAC fluxes, as well as improve seasonal and land-use representation of GHG fluxes
 - North American LOAC fluxes (2010-2019) quantified as part of the REgional Carbon Cycle Assessment and Processes Study (RECCAP-2)

Stakeholder Engagement & Summary

Stakeholder Engagement

- Stakeholder Workshop (fall 2023, spring 2025)
- Open house (Oct. 2022)
 - Miccosukee high-school students
- Earth Day 2023 (Marathon airport)
 - The Diving Museum
 - Coast Love (mangrove planting)
 - Florida International University
 - Florida Coastal Everglades LTER
- Earth Day 2024
 - Seminole Tribe of Florida (Climate Resilience Team, Summer Reading Prog.)
- NASA ARSET training (Oct. 2024)
 - Conservation International, CU-ESIIL, ELTI
- NASA Earth to Sky 'Florida Squeezed' (Apr. 2024)
 - State agencies, NGO's (National Marine Sanctuary Foundation)
- Other: AGU, radio, documentaries (Shield Documentary, CBC, COP28 plenary), Yale Univ., and NASA EO stories

Publications (data archived on ORNL DAAC search *blueflux*)

- Erin Delaria et al., 2024. Assessment of landscape-scale fluxes of carbon dioxide and methane in subtropical coastal wetlands of South Florida. Journal of Geophysical Research – Biogeosciences.
- Cheryl Doughty et al., in prep.. Historical blue carbon fluxes (2000-2022) for Southern Florida.
- Jon Gewirtzman et al., in prep.. Component-specific mangrove methane fluxes across a gradient of hurricane disturbance and regeneration.
- Ben Poulter et al., 2023, Multi-scale observations of mangrove blue carbon ecosystem fluxes: The NASA Carbon Monitoring System BlueFlux field campaign. Environmental Research Letters.
- Derrick Vaughn et al., in review. Seasonal Dissolved Carbon and Greenhouse Gas Fluxes from Tidal Rivers Draining Mangroves in the Florida Everglades.

Mapping Coastal Wetland Changes from 1985 to 2022 in the US Atlantic & Gulf Coasts and Estimating Lateral Carbon Fluxes

Courtney Di Vittorio, WFU Engineering

NASA OBB Program Annual Meeting Dec 3, 2024

NASA OBB

Grant#80NSSC21K1365

Project Overview & Motivation

Observations of Marsh Erosion, New York (Dorothy Peteet)

- How much carbon has entered and will enter the ocean?
- How significant is this coastal carbon flux?
- How could we include this in ocean and climate models?

Proposal Team - NASA

Peteet

Anastasia

Romanou

Braneon

Yasin Rabby

WFU Postdoc, Graduate, and Undergraduate Students

Saeed Movahedi

Melita Wiles

Jacob Louie

Scarlett Johnson Alex Schluter Wes Hinchman

How much has eroded and where?

National Wetlands Inventory (NWI)

- Polygon
- Hierarchical Classification Scheme
- Snapshot in Time
- Inconsistent Dates

NOAA C-CAP

- Raster (30 meter)
- Aligns with NLCD, but with 10 wetland sub-classes
- 1996, 2001, 2006, 2010, 2016

The 2016 Land Cover/Land Use data symbolized on the Land Cover Name (COVERNAME) field, using the C-CAP High-Resolution Land Cover Classification Scheme

> Bare Land Cultivated Deciduous Forest Developed Open Space Estaurine Aquatic bed Estuarine Emergent Wetland Estuarine Forested Wetland Estuarine Scrub/Shrub Wetland Evergreen Forest Grassland Impervious Palustrine Aquatic Bed Palustrine Emergent Wetland Palustrine Forested Wetland Palustrine Scrub/Shrub Wetland Pasture/Hav Scrub/Shrub Unconsolidated Shore Water

Image Source: Mass.gov

Image Source: Mass.gov

Comparison of coastal wetland inventories and implications for change detection (Rabby & Di Vittorio, 2024)

Key Findings

- C-CAP estimates smaller net wetland areas than NWI
- C-CAP estimates larger emergent wetland areas and smaller scrub wetland areas compared to NWI
- DECODE estimates significantly more change than C-CAP

New Coastal Wetland Change Maps

Final Product

Change Type Map

Label	Short Description	Explanation
0	No changes	No transitions in entire time series.
1	Mixed change - temporary	Transition between full and mixed class. Class at the beginning and end match.
2	Mixed change - permanent	Transition between full class and mixed class. Class at the beginning and end are different.
3	Gradual full change - temporary	Full class transition with a mixed class in between. Class at beginning and end match.
4	Gradual full change - permanent	Full class transition with a mixed class in between. Class at beginning and end are different.
5	Abrupt change - temporary	Full class transition with no mixed class in between. Class at beginning and end match.
6	Abrupt change - permanent	Full class transition with no mixed class in between. Class at beginning and end are different.
7	Abrupt and gradual change - temporary	Both gradual and abrupt changes are present. Class at beginning and end match.
8	Abrupt and gradual change - permanent	Both gradual and abrupt changes are present. Class at beginning and end are different.

-91°20' -91° -90°40' -90°20' -90° -89°40' -89°20'

Time Series Change Analysis – Barataria, LA

Google Earth Engine App

https://ee-cdivittorio-wfu.projects.earthengine.app/view/us-coastal-wetland-land-cover-change-maps-1985-to-2022 Zenodo: https://doi.org/10.5281/zenodo.13525004

How much carbon is going into the coastal ocean? (Dorothy Peteet)

Carbon Stock = marsh area x depth x 27 Kg C/m³ (Holmquist et al., 2021) [3]

Average Marsh Depth by State

Carbon Stock by State

Predictive Models of Marsh Loss

(Saeed Movahedi & Natassa Romanou)

Y: Areal Changes

- Emergent Wetland to Water
- Mixed Wetland/Water to Water
- Wetland to Mixed Wetland/Water

X: Env. Variables from Reanalysis Products

Questions to consider in carbon flux estimates

- What is an acceptable way to estimate marsh depth in areas with sparse data and how should we quantify uncertainty?
- What fraction of the carbon stock enters the coastal ocean when marshes transition to water?
- How should we account for full class changes versus mixed class (transitional) changes in our carbon flux calculations?

[4] Sapkota & White (2019) - 75% of eroded carbon is mineralized

References

[1] Rabby, Y.W., Di Vittorio, C.A. Comparison of coastal wetland inventories for representative sites in the United States and implications for change detection. *Wetlands Ecol Manage* **32**, 479–507 (2024). <u>https://doi.org/10.1007/s11273-024-09998-9</u>

[2] Di Vittorio, Courtney A., et al. "Mapping Coastal Wetland Changes from 1985 to 2022 in the US Atlantic and Gulf Coasts using Landsat Time Series and National Wetland Inventories." Remote Sensing Applications: Society and Environment (2024): https://doi.org/10.1016/j.rsase.2024.101392

[3] Holmquist, J. R., Brown, L. N., & MacDonald, G. M. (2021). Localized scenarios and latitudinal patterns of vertical and lateral resili-ence of tidal marshes to sea-level rise in the contiguous United States. *Earth's Future*, 9(6), e2020EF001804.

[4] Sapkota, Y., & White, J. R. (2019). Marsh edge erosion and associated carbon dynamics in coastal Louisiana: A proxy for future wetland-dominated coastlines world-wide. Estuarine, Coastal and Shelf Science, 226, 106289. https://doi.org/10.1016/j.ecss.2019.106289

Photobleaching as a major sink of CDOM in the Global Ocean

Xiaohui Zhu and <u>Cédric G. Fichot</u>

Department of Earth and Environment, Boston University

J. Harringmeyer, M. Weiser, K. Kaiser, S. Bélanger, C. Anderson, W. Miller, B. Walker

Remote Sensing of

Water Quality

Photobleaching of CDOM

- Ubiquitous process that reduces UV & visible light absorption
- Regulates PAR availability and UV exposure in surface waters

• Decouples dynamics of DOC and CDOM in the ocean

How significant is this process globally?

Quantifying photobleaching rates in the ocean has been a challenge

Apparent Quantum Yield (AQY) not well known

Difficult to determine

Dual spectral dependency (matrix) -> exposure λ and response λ

• What is its variability in the ocean?

• <u>Can we constrain this variability?</u>

Milestones and Objectives

1. Develop a new approach to determine AQY Matrix of natural samples

2. Understand and constrain variability of AQY Matrix in natural waters

3. Model photobleaching rates in the global ocean

Zhu and Fichot, In progress

Zhu et al., ES&T (2020)

Variability of the photobleaching apparent quantum yield matrix (AQY-M)

- CDOM composition/degradation state (S₂₇₅₋₂₉₅)
- Water temperature
- Extent of solar exposure

Zhu et al., STOTEN (2024)

Implementation on global scales

Climatology of photobleaching rates in global mixed layer

Turnover rate of CDOM by photobleaching in global mixed layer

Sensitivity of photobleaching rates to ocean warming

Conclusions

1. First climatology of spectral photobleaching rates in the global ocean

2. Photobleaching turns over the equivalent of 1-to-6 times the mixed layer CDOM stock each year (1-6% of the global ocean CDOM)

- 3. Process is sensitive to ocean warming:
 - \Rightarrow Will it enhance solar exposure in the surface mixed layer in the future?
 - \Rightarrow What will be the impacts on ecosystems?

Remote Sensing of Water Quality

Thank you

NASA Award #80NSSC2K1655

Tracking Post-Wildfire Sediment Dynamics and Marine Ecosystem Stress: Insights from Legacy and Modern Satellite Missions

Lori Berberian^{1,2}

loriberberian@ucla.edu

Kyle C. Kavanaugh¹, Christine M. Lee², Erin L. Hestir³, Mandy Lopez^{2,4}, Carmen Blackwood², Dulcinea Avouris⁵

¹ Department of Geography, University of California, Los Angeles ²Jet Propulsion Laboratory, California Institute of Technology ³ Department of Civil & Environmental Engineering and Sierra Nevada Research Institute, University of California, Merced ⁴Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles ⁵ US Geological Survey, California Water Science Center, Sacramento California

UCLA

Jet Propulsion Laboratory California Institute of Technology

Primary Physical drivers of Kelp Dynamics

Big River Mendocino, CA

Kelp require <u>cool</u>, <u>sunlit</u>, <u>nutrient</u> rich waters to grow.

Kelp is Variable!

Understudied Drivers of Kelp Dynamics: Wildfires

Wildfires Can Alter Ocean Water Clarity

Case Study: Woolsey 2018 Fire in Malibu, California

Apr 14, 2018 (pre-fire)

Nov 10, 2018 (fire)

Nov 30, 2018 (post-fire)

Terrigenous Input

- Increased Sediment Runoff
- Total Suspended Matter
- Nutrient Loading (N, P)
- Organic and Chemical Compounds
- Altered Coastal Erosion Patterns

Aerial Input

- Direct Smoke Deposition
- Wind blown ash/debris

Research Question

How did the increase in sedimentation delivery to the coastal ocean after the Woolsey wildfire impact kelp forest in Malibu, CA?

Remotely Sensed Giant Kelp and Ocean Color

Santa Barbara Coastal Long Term Ecological Research

European Organization for the Exploitation of Meteorological Satellites

Summary of Products:

- Quarterly Bull kelp and giant kelp canopy area and biomass from Landsat 5,7, 8.
- Area-given by 30 m pixels

Summary of Products:

- Total Suspended Matter
- Inherent Optical Properties
- Photosynthetically Available Radiation
- 2 revisit time, 300 m resolution

Bell, T., K. Cavanaugh, and D. Siegel. 2024. SBC LTER: Time series of quarterly NetCDF files of kelp biomass in the canopy from Landsat 5, 7 and 8, since 1984 (ongoing) ver 23. Environmental Data Initiative

Malibu's kelp cover has not recovered Post-Wildfire

Post-Fire Recovery Index: Deviation From Historical Average

Global Distribution of Kelp as an Indicator of Marine Coastal Health

Eger, A. M., Layton, C., McHugh, T. A, Gleason, M. and Eddy, N. 2022. Kelp Restoration Guidebook: Lessons Learned from Kelp Projects Around the World. The Nature Conservancy, Arlington, VA, USA

Conclusion and Future Work

• Implement a **BACI (Before-After-Control-Impact) analysis** with an expanded number of control and test sites

- Model changes in the light field reaching kelp forests after wildfire-driven runoff using the bPAR model.
 - i. Investigate how sedimentation and nutrient influx alter light availability, impacting kelp spatial distribution and growth.

• Provide critical insights into the connections between wildfire events and coastal ecosystem stress and recovery.

Thank you!

Seasonal re-entrainment of respired organic matter decouples surface and annual net community production in the Southern Ocean

Shannon McClish, Seth Bushinsky, Nathan Briggs, Clara Douglas

Arteaga et al, 2018

The strength and efficiency of the Southern Ocean biological carbon pump is uncertain

Carbon export (mg C m⁻² day-1) estimated with 4 different e-ratios (NPP: carbon export) Arteaga et al, 2018

The strength and efficiency of the Southern Ocean biological carbon pump is uncertain.

Arteaga et al, 2019

Carbon export (mg C m⁻² day-1) estimated with 4 different e-ratios (NPP: carbon export)

BGC profiling floats have expanded net community production (NCP) estimates, but these estimates are integrated over different times and depth horizons

How is NCP during seasonal blooms (bNCP_{ML}) related to annual NCP (ANCP)?

bNCP_{ML}: Simple mixed layer nitrate budget during seasonal bloom

How is NCP during seasonal blooms (bNCP_{ML}) related to annual NCP (ANCP)?

bNCP_{ML}: Simple mixed layer nitrate budget during seasonal bloom

Estimate respiration from Oxygen consumption on isopycnals

RRC =carbon respired above winter MLD

How is NCP during seasonal blooms (bNCP_{ML}) related to annual NCP (ANCP)?

On average ~42% of Carbon produced during seasonal blooms is respired and then re-entrained into the mixed layer

Seasonal re-entrainment of respired carbon decouples bloom NCP (bNCP_{ML}) from ANCP

Float-derived bloom NCP (bNCP_{ML}) and satellite-derived annual Export Production (EP) are correlated but ANCP and annual EP are not

Annual EP underestimates $bNCP_{ML}$ in polar zones where observations are limited by solar angle and sea ice (A,C)

Annual EP does is not representative of ANCP, in part due to seasonal reentrainment of respired carbon (B,D)

Float-derived bloom NCP (bNCP_{ML}) and satellite-derived annual Export Production (EP) are correlated but ANCP and annual EP are not

Annual EP underestimates $bNCP_{ML}$ in polar zones where observations are limited by solar angle and sea ice (A,C)

Annual EP does is not representative of ANCP, in part due to seasonal reentrainment of respired carbon (B,D)

Conclusions

Currently working to expand this beyond Southern Ocean!

- 42% ± 22% of organic carbon produced during blooms is respired and reentrained into the mixed layer in winter.
- 2. Compensation between respiration and POC loss rates and winter MLD leads to similar fraction of respired and reentrained carbon throughout Southern Ocean.
- 3. ANCP estimates using a 100m depth horizon overestimate Southern Ocean ANCP and regional differences.
- Satellite-derived export production is correlated to float bNCP_{ML}, but not ANCP, respired and re-entrained carbon is not accounted for in current e-ratios.

Evolution of sediment-derived CDOM upon fluxing to a river-dominated coastal water column

& FAU HIGH SCHOOL

Twardowski, Gabrielle McHenry

Ani Venkat

FAU: Jordon Beckler, Hanna Bridgham, Veronica Ruiz-Xomchuk, Owen Silvera, Mason

Thackston, Alberto Tonizzo, Tim Moore, Chris Straight, Trevor McKenzie, Mike

FAU High School & interns: Tricia Meredith (FAU HS Research Coordinator)

Brooke Estevez

Georgia Tech: Martial Taillefert, Tony Boever, Evan Margette

For 2024 NASA OBB All Hands Meeting Dec. 3, 2024

IG: @geochemical.sensing.lab

DOC sediment fluxes

DOC Flux= porosity x diffusion coefficient x DOC concentration gradient @ sediment interface

Brigham et al., in prep for submission to Marine Chemistry

River-dominated coastal sediment-derived DOC can rival fluvial inputs

Sediment vs. MS River DOC flux	Area km²	Summer 2021 4 months	Fall 2021 4 months	Spring 2022 4 months	Summer 2022 4 months	Annual
Northern Gulf Shelf: Station 14,						
7, 9, MK, 5B, 4	123,592	0.91 ± 0.2	0.63 ± 0.22	0.76 ± 0.41	0.59 ± 0.28	2.13 ± 0.87
(Tg per season)						
Northern Gulf Slope: Station 11,						
12, 13, 15	130,979	1.27 ± 0.47	1.73 ± 0.69	1.07 ± 0.15	1.18 ± 0.9	4.02 ± 1.53
(Tg per season)						\frown
Total Northern Gulf Sediment	254.571	2.18 ± 0.67	2.35 ± 0.91	1.83 ± 0.56	1.77 ± 1.18	6.16 ± 2.39
(Tg area ⁻ Season ⁻)						
	Dischause				(
Mississippi River (Tg)	Discharge	Winter 2022	Spring 2022	Summer 2022	Fall 2022	Annual 2022
(Potter and Xu, 2022).	500 km³ yr⁻¹	1.56 Tg	1.31 Tg	0.91 Tg	0.75 Tg	4.54 Tg
						$\mathbf{\nabla}$

Brigham et al., in prep for submission to Marine Chemistry

Sediments as a major CDOM inventory

Individual sediment pore water samples

- Pore water [DOC] is ~2-3x river plume DOC... CDOM absorption is 10-100x!
- Sediment CDOM diffusive or erosive (resuspension) fluxes fluxes should be massive?

Forward Rrs modeling of resuspension & conservative mixing of sediment CDOM

DOC-Fe(III) complexes regulate CDOM absorption

High apparent "CDOM" inventories regulated by dissolved Fe→ Fate during entrainment in oxygenated/turbulent water column?

Simulating entrainment of sediment pore water into BBL

DOC-Fe(II) to DOC-Fe(III) oxidation enhances CDOM absorption

Conclusions

Most comprehensive sediment DOC flux dataset to date (coastal C cycling & reservoirs)

Sediment pore waters display strong absorption, but changes upon WC entrainment

Complex chemistry requires collaboration between optics & geochemistry communities →implications for any redox-stratified environment

WC impacts likely episodic in nature, persistent observations at depth (AUVs, Argo floats?)

Long term fate of sediment CDOM remain unknown and coupled to Fe chemistry

PACE to be a gold mine for sediment dynamics in particular... → towards an iron algorithm?
Lamont-Doherty Earth Observatory Columbia University | Earth Institute

Scale-Dependent Drivers of Air-Sea CO₂ Flux Variability using the ECCO-Darwin Model

Recently published in Geophysical Research Letters Poster at AGU, Monday AM

Presenter: Amanda R. Fay

Coauthors: Dustin Carroll, Galen A. McKinley, Dimitris Menemenlis, and Hong Zhang

Motivation

We lack the critical mechanistic understanding of the drivers of variability and change in the ocean carbon sink over recent decades.

Model Experiment

We utilize the ECCO-Darwin ocean biogeochemistry model to run a suite of sensitivity experiments

Simulation	Atmospheric xCO ₂	Atmospheric physics
Baseline	Observed atmospheric xCO ₂	ECCO LLC270, Extended with ERA5
Linear Atmosphere	Constant 1.92ppm yr ⁻¹ xCO ₂ trend applied	Same as Baseline run
Constant Climate	Observed atmospheric xCO ₂	Baseline, with repeating year 1999 forcing

By adjusting forcing fields, we are able to isolate impacts from the variability of the atmospheric CO_2 growth rate and climate.

Results: Global Carbon Flux

Global annual mean air-sea CO₂ flux results shown for 3 simulations, 1990-2022

Results: Global Carbon Flux

- Globally, the two forcing types are roughly equal in their magnitude of impact on ocean carbon sink variability.
- Considering their variability, the two are comparable, with mean absolute deviation (MAD) values of 0.16 vs 0.11 PgC yr⁻¹

Results: Regional Carbon Flux

Impact of changing atmospheric growth rate Impact of changing climate

Interannual variability in the flux perturbation timeseries is *much larger for the impact of climate* than it is for the impact of changing atmospheric growth rate

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY | EARTH INSTITUTE

Results: Regional Carbon Flux

Impact of changing atmospheric growth rate Impact of changing climate

As the region of interest gets larger in area, the impact of changing atmospheric growth rate increases.

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY | EARTH INSTITUTE

Southern Ocean, 7.92 x 107 km²

Conclusions

- Variable atmospheric pCO₂ growth rate drives variability in air-sea CO₂ fluxes at all ocean locations, integrating to globally-significant impact
- Climate variability, both internally driven and externally forced, is the dominant driver of variability as spatiotemporal scales become smaller
- Global-mean variability of air-sea CO₂ flux is equally forced by climate and atmospheric growth rate

The implications of our study for real-world ocean observing systems are clear: in order to detect future changes in the ocean carbon sink due to slowing atmospheric CO₂ growth rates, better observing systems are required.

Check out our arcgis storymap:

NASA storymap available here!

ir-Sea Carbon Flux. How Much? Where? Why?

<u>п</u> •••

Air-Sea Carbon Flux. How Much? Where? Why?

ECCO-Darwin provides answers

Fish from space: Remote sensing sheds light on the dynamics of mid-trophic levels in the California Current

J. Guiet¹, K. Srinivasan¹, D. Bianchi¹ and C. Wall²

¹ University of California Los Angeles ²University of Colorado Boulder

Why mid-trophic levels (MTLs)?

(MTLs)

Why mid-trophic levels (MTLs)?

Mid-trophic levels (MTLs) - Key component of ecosystems

- Complex dynamics

- Hard to sample

MTLs in EK60 acoustic observation

Figure from Haris et al. (2021), Scientific Data

10y of acoustic targets

www.ncei.noaa.gov/maps water-column-sonar/

10y of acoustic targets Environmental features (17)

+

www.ncei.noaa.gov/maps/ water-column-sonar/

Acoustic and remote sensing data fusion using machine learning can provide new perspectives on the dynamics of MTLs'?

Focus on the California Current Ecosystem (CCE)

10 years of surface acoustic reconstruction in the California Current

10 years of surface acoustic reconstruction in the California Current

Acoustic reconstruction capture multiple MTLs dynamics, but with extrapolation limitations

Interannual variability of acoustic reconstructions

First EOF

Offshore/southward expansion during negative phases (expected)

Interannual variability of acoustic reconstructions

Interannual variability of acoustic reconstructions

Offshore/southward expansion during negative PDO phases (expected)

Increase in central California during negative PDO phases

North/South shift during negative PDO/ONI phases

Conclusion

Fusion remote sensing acoustic observation allow reconstruction of MTLs' backscatter

Conclusion

Fusion remote sensing acoustic observation allow reconstruction of MTLs' backscatter

Inter-annual acoustic variability captures expected dynamics of MTLs

- e.g. inter-annual variability of epipelagic fish distribution

Acoustics vs. biomass (b) PDO-(a) PDO+ S_A 50 50 28 **O100** • 30 • 10 in kg 40 40 23 18 30 30 -130 -125 -120 -130 -125 -120

Conclusion

Fusion remote sensing acoustic observation allow reconstruction of MTLs' backscatter

Inter-annual acoustic variability captures expected dynamics of MTLs

- e.g. inter-annual variability of epipelagic fish distribution

Next step: Explore dynamics in other regions (Gulf of Alaska, Central Pacific Ocean), across ocean depth layers, improve connection with MTLs biomass and particle export.

Impact of Pacific Ocean Heatwaves on Phytoplankton Composition and Export Production

E ARTH SCIENCES

Lionel A. Arteaga Global Modeling and Assimilation Office (NASA GSFC) / UMBC

Ocean Biology and Biogeochemistry virtual meeting 2024

Ecosystem consequences

Cavole et al. (2016)

Decline in chlorophyll stock

GODDARD EARTH SCIENCES

NASA Ocean Biogeochemical Model (NOBM)

Figure from Arteaga and Rousseaux

Main findings

Main findings

Original target study areas

Arteaga and Rousseaux (2023)

ENSO 3.4: A decline of 40 % in mean surface chlorophyll was associated to a near full collapse in diatoms.

Figure from Laufkötter et al. (2020)

Changes in phytoplankton community

4. 4. 57

Changes in phytoplankton community

Conclusions

Perturbations: Need to be of a greater magnitude than those imposed by the natural climate variability of the seasonal cycle or create a unique imbalance to elicit a clear change in the phytoplankton community composition.

Equatorial Pacific: A decline of 40 % in mean surface chlorophyll was associated to a near full collapse in diatoms. This was driven by strong nutrient limitation as a consequence of low deep water upwelling. **Carbon export:** The decline in biomass is mirrored in modeled export and is also observed in independent mapped products of particle backscatter and oxygen utilization derived from BGC-Argo floats. *To be continued*

Postdoc position available to work on heatwaves and carbon export at NASA GSFC

(https://gestar2.umbc.edu/jobs-at-gestar-ii/postdoctoralresearch-scientist-position-ocean-biogeochemicalmodeling/)

INTEGRATING PHYTOPLANKTON GENOMICS AND REMOTE SENSING TO DETECT IRON STRESS FROM SPACE

Amy Nuno

Advised by: Adam Martiny

UC Irvine

NASA

Collaboration with Toby Westberry and Mike Behrenfeld from Oregon State University

Background Sources of Iron

- Primary sources of iron
 - Aeolian dust deposition
 - Deep vertical mixing

Source: NASA Earth Observatory

Background Phytoplankton Iron Limitation

- Well-known Iron-limited regions
 - High nutrient, low chlorophyll
 - Validates through *in-situ* iron fertilization experiments
- Seasonally iron-limited regions
- Oligotrophic regions are not well-constrained

Source: https://doi.org/10.4236/ajcc.2019.81002
Background Phytoplankton Iron Limitation Physiology

- Iron found in both Photosystem I (PSII) and Photosystem II (PSI)
- Under iron limitation, we observe increased fluorescence
 - Increase in the PSII: PSI ratio
 - Disconnected light-harvesting complexes present in HNLC conditions
- Fluorescence can be quantified using the MODIS-Aqua satellite
 - Bands 13 (660 nm), 14 (670 nm), and 15 (750 nm)

Methods

Derivation of the Fluorescence Quantum Yield (Φsat)

- Isolating signal due to iron limitation in satellite fluorescence
- Three Key Factors Influencing Fluorescence:
 - 1. Chlorophyll concentrations
 - 2. Pigment packaging effects on light absorption
 - 3. Non-photochemical quenching
- Fluorescence Quantum Yield (Φsat):
 - Likelihood that absorbed light energy is emitted as fluorescence rather than used in photochemistry or lost as heat.
 - Formula:

• Φ sat= $\frac{Fluorescence photons}{Absorbed photons}$

- Data Sources
 - MODIS nFLH, Chlorophyll-a, and iPAR
- Methodology
 - Follow Behrenfeld et al., 2009 to calculate Φsat.
 - Apply additional corrections

Methods

Validation of Φ sat with Genomic Iron Stress Biomarkers

- Validate Φsat with
 - 1. In-situ genomics
 - 2. Bottle experiments
 - 3. In-situ nutrient concentrations
 - 4. Iron stress models
- Genomics and Φsat were matched spatially and temporally

$\begin{array}{c} \textbf{Results} \\ \textbf{Climatological Mean } \varphi_{sat} \end{array}$

$\begin{array}{c} \textbf{Results} \\ \text{Seasonal Climatology} \, \varphi_{\text{sat}} \end{array}$

$\begin{array}{c} \textbf{Results} \\ \text{Seasonal Climatology} \, \varphi_{\text{sat}} \end{array}$

Results

Spatial Patterns of Iron Stress Genomics and φ_{sat}

- Pacific Ocean transect
 - ϕ_{sat} captures the HNLC dynamics
 - ϕ_{sat} in the gyre is more dynamic
- Indian Ocean Transect
 - \$\overline{\phiststarticlessinglespinglessinglessinglessinglessinglessinglessinglessinglessing

Conclusion

1. In-situ genomics iron stress biomarkers and other data datasets support ϕ_{sat} as an iron stress proxy.

2. Iron stress occurs when macronutrient levels are elevated.

3. Iron stress regions are dynamic.

Ocean Biology and Biogeochemistry: Our Science II

Understanding the Drivers of Global Kelp Forest Dynamics

PIs: Tom Bell (WHOI), Kyle Cavanaugh (UCLA), Jarrett Byrnes (UMass Boston)

Postdocs: Henry Houskeeper (WHOI), Julieta Kaminsky (Fulbright – Argentina)

Graduate Students: Katherine Cavanaugh (UCLA), Ashland Aguilar (WHOI), Jessica Smith (WHOI)

Collabs: Caro Pantano (Argentina), Nur Arafeh Dalmau (Mexico), AJ Smit (South Africa), Luba Reshitnyk (Canada), Mike Stekoll (AK), Heidi Pearson (AK), and many more

<u>Long-term, large spatial extent</u> monitoring of kelp canopy dynamics from the Landsat satellites

Temporal Coverage

1984 – *present* 8 – 16 day repeat

Spatial Resolution 30m pixel res.

Bell et al. 2020

Resistance and Resilience of Kelp to Marine Heat Waves

Bell et al. 2023 PLOS One

Kelp on the Monterey Peninsula has collapsed...

Bell et al. 2023 PLOS One

Kelpwatch.org: Data visualization and Access

Bell et al. 2023 PLOS One

kelpwatch.org

kelpwatch.org

) Zoom in and pan to explore and download kelp data

Houskeeper et al. in prep

Houskeeper et al. in prep

Thank you!

tbell@whoi.edu

Mapping marine debris and other floating matters using satellite observations: What's really possible and how

Chuanmin Hu, University of South Florida, huc@usf.edu

Thanks to many coauthors and collaborators

What are we talking about? The many types of marine debris (a.k.a. marine litter)

Marine debris: Solid materials released to the marine environment from natural disasters or human activities: Microplastic particles, plastic bags, plastic bottles, fishing gear, tree branches/leaves, driftwood...

Barrrows et al. (2018)

Garaba & Dierssen (2018)

Web source

Web source

What are we talking about? The many types of floating matters Sargasssum horneri Ulva prolifera

What's really possible?

- LIDAR still in laboratory and conceptual phase
- SAR very limited use, for both microplastics and others
- Passive optics most often used, possible but still difficult

Why is it so difficult?

Conceptually and in practice – how?

Al feature extraction

Is there "something"?

How – examples

What's next?

PACE/OCI shows the capacity of imaging spectroscopy over floating algae; MODIS does not

Summary

- Remote detection of marine debris and other floating matters is technically challenging, but still possible with passive optics
- Conceptual design to detect, discriminate, and quantify them
- Some successes have been achieved, but much remains to be done

What's next

- Improve algorithms and reduce uncertainties complete the spectral library, and take advantage of hyperspectral and high-resolution sensors (e.g., Cubesats)
- Global mapping where and how much are marine debris and other types of floating matters?

Linking Chemical Composition of Untreated Wastewater with Laboratory, In Situ, and EMIT Spaceborne Spectroscopy

Eva Scrivner^{1,2},

Natalie Mladenov³, Trent Biggs¹, Alex Grant³, Elise Piazza¹, Stephany Garcia¹, Christine Lee⁴, Christiana Ade⁴, Ileana Callejas⁴, Benjamin Holt⁴, Daniel Sousa¹

¹Department of Geography, San Diego State University, San Diego, CA, USA

²Department of Marine Sciences, University of Connecticut, Groton, CT, USA

³Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, USA

⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

NASA Remote Sensing of Water Quality Program Grant #80NSSC22K0907

& NASA Applications-Oriented Augmentations for Research and Analysis Program #80NSSC23K1460

Jet Propulsion Laboratory

Wastewater Discharge in the Tijuana River

- Hundreds of millions of liters of wastewater are expelled into the Tijuana River annually.
- Carries harmful pollutants through two major cities (> 3 million residents) and a protected estuary.

Research Objectives

1) What spectral features exist in pure and mixed Tijuana River wastewater?

2) With what strength do these features correlate with paired water quality measurements?

3) Are these features present *in situ* or in satellite imagery?

Methods

Experimental Design

- Varying dilutions of WW-SW were prepared.
- Reflectance measurements made using Spectra Vista Corporation[™] (SVC) HR-1024i spectroradiometer.
- Concurrent water quality measurements made with a HORIBA Aqualog[®] benchtop fluorometer.
- Challenging laboratory constraints due to hazardous nature of untreated wastewater and limited sample volume.

Results

As % WW increases, 620 nm absorption increases

Water quality parameters were highly correlated with 620 nm depth.

620 nm absorption present *in situ* and in EMIT imagery

Wavelength (nm)

(A) 100% WW laboratory reflectance spectra from October (dashed) and February (solid) experiments.
(B) Spectra from a field-deployed spectroradiometer of a known wastewater plume (25 March 2023).
(C) Spectra from an EMIT hyperspectral satellite image over a known wastewater plume (25 March 2023) and open ocean.

Band Depths Trace Wastewater Plume in EMIT Imagery

Discussion

Results Summary

620 nm absorption:

- 1) increases under high wastewater conditions,
- 2) has high correlation with water quality parameters,
- 3) present *in situ* and in hyperspectral imagery

Phycocyanin

- Phycocyanin characteristically absorbs at 620 nm.
- Accessory pigment in cyanobacteria.
- Commonly found or even employed in secondary wastewater management.

Absorption spectra of purified phycocyanin. Figure credit: *Paswan et al., 2015*

Future Applications

- Continue ongoing sampling to characterize change in wastewater composition
 - Major recent policy change (September, 2024) resulted in near-complete redirection of discharge from Tijuana River Estuary to Punta Bandera outfall in Mexico
- Operationalize algorithms to map this feature in the Tijuana River Estuary and San Diego / Tijuana coastal ocean.
- Results are encouraging for use of EMIT and other hyperspectral satellite sensors in water quality applications.
- Ongoing work integrating hyperspectral signatures with multispectral (Planet, Landsat, and Sentinel-2), SAR (Sentinel-1) & thermal (ECOSTRESS)
 - Erin Reilly, Master's Thesis (SAR) ; Lily Winesett, Undergraduate Honors Thesis (multispectral)

Acknowledgments

 We would like to thank the large group of collaborators and students who make our field and laboratory sampling efforts possible, including but not limited to: Lily Winesett, Erin Reilly, Callie Summerlin, David Penn, Mia Pollasky, Julian Gutierrez, Scotty Dingwall, Blanca Heredia, Trinity Weary, Tate Mckay, and Yzatis Silva.

Thanks! Questions?

Coastal Vulnerability in the Face of Increasing Wildfires:

A Land-sea Perspective Integrating Physical, Biological, and Socioeconomic Factors

Mandy Lopez^{1,2} amanda.m.lopez@jpl.nasa.gov

Christine M. Lee¹, Erin L. Hestir³, Lori A. Berberian⁴, Carmen Blackwood¹, Michelle Gierach¹

¹ Jet Propulsion Laboratory, California Institute of Technology

² Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles

³ Department of Civil & Environmental Engineering and Sierra Nevada Research Institute, University of California, Merced

⁴ Department of Geography, University of California, Los Angeles

Climate change, wildfires, and the land-ocean continuum

- Coasts are biodiversity hotspots providing key ecosystem services (e.g., habitat, carbon cycling, fisheries, recreation)
 - ~4 billion people live near or depend on coasts
- Wildfires increasing in frequency and severity due to changing climate and human activities
- Major implications of wildfires for humans and the environment
 - 15% of terrestrial and freshwater species higher extinction risks due to fire
 - 2001-2019 fires caused >110 M ha of global forest loss
 - 2020 California fires cost \$149 B across economic, health, and environmental sectors
- Fires reduce vegetation cover/infiltration and increase erosion
 - Coastal watersheds link land to sea increased runoff changing exports of sediment, nutrients, carbon, pollutants
 - Coastal vulnerability and resilience overlook wildfire influence on marine ecosystems and the humans dependent on them

Global coastal wildfire vulnerability index

- Coastal vulnerability indices traditionally reflect physical factors like coastal slope, sea level rise, etc.
- Wildfire vulnerability indices assess socioeconomicecological vulnerability in inland systems overlooking the coastal domain
- Knowledge gap: coastal vulnerability to wildfire!
 - 1. Integrated coastal wildfire vulnerability index (ICVI) combining physical and socioeconomic factors
 - 1. Coastal indigenous seafood consumption and marine protected areas (MPA) data overlaid with ICVI results to further assess coastal vulnerability to fire
- 1. Identify priority areas for coastal wildfire resilience efforts and opportunities for space-based observations to improve understanding

Coasts most vulnerable to wildfire

- Highest vulnerability in North Africa-South Europe and South-Southeast Asia currently, and expands into South-Southeast-East Asia by 2100
- Moderate to high vulnerability in most of Asia and select areas in Europe, Africa, Central-South America, by 2100 this expands in the Americas, Europe, Africa
- Offers first look at potential coastal vulnerability to wildfire, how does it compare with MPA and coastal indigenous seafood consumption? (next slide)
- Future work could benefit from additional data including sea level rise, blue carbon inventories (kelp, corals, seagrasses, indigenous coastal resource use (i.e., subsistence, ceremonial), etc.

Coasts most vulnerable to wildfire

- MPA presence and high amounts of indigenous seafood consumption further emphasize vulnerable regions in South America, Southeast Asia, and Oceania not fully captured by ICVI
- Both Vietnam and The Philippines highly vulnerable with ICVI increases from 3 to 4 between 2023 and 2100, only Vietnam has high indigenous seafood consumption
- Lesser Sunda Islands, Indonesia no ICVI change between 2023 and 2100 yet high indigenous seafood reliance and MPAs
- Indigenous perspectives are not well captured by this ICVI, need for more inclusive, largescale data

Remote sensing as a tool for understanding coastal wildfire vulnerability

- Robust and integrated social, economic, <u>environmental</u> data at local to global levels are critical
 - Current and future MPA management
 - Equitable inclusion of communities (especially indigenous)

 In situ data limitations: satellite remote sensing can provide global coverage datasets at varying spatial and temporal scales to understand complex land-sea dynamics

NASA's Earth System Observatory Core and associated marine missions in the late 2020s

Aerosois – ATMOS Gases – SBG Surface Deformation – NISAR Surface Composition and Geologic Hazards – SBG

WATER CYCLE Precipitation — ATMOS Ice Mass Evolution - NISAR Snow Albedo and Melt — SBG Total water storage - MC ECOSYSTEMS AND NATURAL RESOURCES Boundary Layers – ATMOS Ecosystem Structure – NISAR Vegetation Type/Physiology – SBG LAND-SEA CONTINUUM Phytoplankton, Organic Matter, Sediment — SBG,GLIMR, PACE Boundary layers-ATMOS

Synergy example: Depending on spatial resolution and temporal revisits PACE or SBG could capture wildfire event and potentially post-fire coastal impacts, while GLIMR's sub-daily observations are well-suited to record ephemeral coastal processes like postfire turbidity plumes and phytoplankton blooms

Thank you!

amanda.m.lopez@jpl.nasa.gov

Woolsey Fire near Malibu, California November 2018 Photo Credit: U.S. Forest Service

How have Florida's red tides changed over the past 40 years? Bridging CZCS to MODIS observations

Yao Yao a, Chuanmin Hu a, Brian Barnes a, Katherine Hubbard b, Cheng Xue a, Jennifer Cannizzaro a

^a University of South Florida, College of Marine Science, St. Petersburg, Florida, United States of America ^b Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, United States of America

NASA OBB annual meeting, Dec 3 & 5, 2024

How have Florida's red tides changed over the past 40 years?

Why is it so difficult to address?

Field sampling

limited in both space and time, and often from event response. Difficult to make statistical assessment

Remote sensing

limited in accuracy due to many factors

So what?

To date, there is still dispute on whether red tides have increased in the past 40-50 years.

Our approach

- 1. Combine the strengths of field sampling and remote sensing to make integrated red tide data products
- 2. Bring in CZCS (1978-1986) to the picture, together with MODIS/A (2003)
- 3. Difficulty: comparing CZCS with MODIS is apples-to-oranges, so we have to change it to apples-to-apples.

1. Combine the strengths of field sampling and remote sensing => red tide maps

1. Combine the strengths of field sampling and remote sensing => annual bloom frequency

2. Make apples-to-apples comparison between CZCS and MODIS

How? Downgrade MODIS to CZCS

- Reduce MODIS data to 8 bits to match CZCS SNRs
- Reduce MODIS bands to CZCS bands
- Reduce MODIS revisit frequency to CZCS revisit frequency

Then, we have a new CZCS mission after 2003 to compare with the 1978-1986 CZCS mission

3. Do we see any changes in this apples-to-apples comparison?

Summary

- Integration of field and satellite data results in red tide maps
- Downgrading MODIS and combining with CZCS lead to a long-term red tide data record
- What have not changed? seasonality and general locations of red tides
- What have changed:

Longer durations of blooms,

Higher annual occurrence frequency,

Most likely (80% chance) bloom size

Observed anthropogenic carbon changes in Subantarctic Mode Water: From formation regions to interior pathways

Daniela König¹, Seth Bushinsky¹, Mathilde Jutras¹ & Ivana Cerovečki² ¹Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA ²Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA

Motivation: Ocean carbon uptake variability & uncertainty

Hauck, et al. 2023

Anthropogenic carbon* accumulation in the ocean interior:

*zonally integrated

Motivation: Ocean carbon uptake variability & uncertainty

Hauck, et al. 2023

Anthropogenic carbon* accumulation in the ocean interior:

*zonally integrated

Subantarctic mode water: formation & physical properties

Biogeochemistry of SAMW at formation

Strong correlation between deep winter mixed layer spiciness and nitrate & oxygen

Data from ARGO floats with >200m mixed layer depth

DIC accumulation in SAMW formation regions

Correlation does not work as well for DIC due to increasing atmospheric CO₂ Especially obvious for older shipboard data (from GLODAP)

DIC accumulation in SAMW formation regions

Can use anomalies from (cubic) regression through ARGO data to estimate DIC increase

DIC accumulation in different density layers

DIC accumulation in different density layers

DIC accumulation in different density layers

Bonus slides

Indian Ocean

Pacific Ocean

Biogeochemistry of deep winter mixed layers

<u>Aquaverse</u>: An Aquatic Inversion Scheme for Remote Sensing of Fresh and Coastal Waters

Ryan E. O'Shea^{1,2} (ryan.e.o'shea@nasa.gov); Arun M. Saranathan^{1,2}; Akash Ashapure^{1,2}; Will Wainwright^{1,2}; Brandon Smith^{1,2}

¹Science Systems and Applications Inc., Lanham, MD, U.S. ²NASA Goddard Space Flight Center, Greenbelt, MD, U.S.

SSA

<u>Aquaverse</u>: An Aquatic Inversion Scheme for Remote Sensing of Fresh and Coastal Waters

TOA radiance

TOA → Rrs

 10^{-1}

 $\operatorname{\mathsf{Rrs}} extsfree \operatorname{\mathsf{IOPs}}$ and $\operatorname{\mathsf{BPs}}$

Rrs, BPs, IOPs → Uncertainty

Atmospheric Correction Model Development

<u>Goal</u>: Develop an atmospheric correction processor that outperforms the state-of-the-art for inland & coastal waters. <u>Target missions</u>: Landsat-8/OLI & Sentinel-2/MSI

Performance Assessment

Pahlevan et al. 2021. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sensing of Environment, 258, 112366

Visual Performance Assessment

Landsat-8/OLI on August 19, 2023

Aquaverse Uncertainty

Sentinel-2/MSI on October 17, 2020

Aquaverse Uncertainty

Preliminary Hyperspectral AC Results

Lake Erie: Near simultaneous retrieval of Aquaverse generated Rrs from EMIT and PACE

Aquaverse inverse modeling: A universal algorithm for water quality and HAB monitoring

- Objective
 - Enable generating globally consistent, reliable, and advanced products from a universal algorithm for water quality and HAB monitoring in inland and coastal waters
- Products
 - Chlorophyll-a (Chla)
 - Phycocyanin (PC)
 - Total Suspended Solids (TSS)
 - Secchi Disk Depth (Zsd)
 - Inherent optical properties (absorption by CDOM, algal, and non-algal particles)
- Satellite Missions
 - Multispectral data: Sentinel-3 /OLCI, Sentinel-2/MSI, & L8/OLI
 - MODIS & VIIRS coming soon, Planet to follow
 - Hyperspectral data: HICO, PRISMA, & PACE
 - EMIT coming soon
- Validation sites
 - Lake Erie
 - Chesapeake Bay
 - Utah Lake

Lake Erie HICO: Oct 30th 2013

Qualitative Validation of BP & IOP Retrieval in Inland & Coastal Waters

Moore et al. 2017 Binding et al. 2019 O'Shea et al. 2023 189

Examples from OLCI: products & uncertainties

Uncertainties

SeaDAS-processed imagery

Aquaverse Preliminary PACE Inversion results

Future work for PACE:

- 1. Atmospheric correction for inland/coastal waters
- 2. Zsd & b_{bp} retrieval
- 3. Total uncertainty
- 4. PCC retrieval

Inverse modeling & uncertainty tutorials

STREAM: Online GUI for OLI/MSI ChI/TSS/Zsd Products via AQV AC

Satellite-based analysis Tool for Rapid Evaluation of Aquatic environMents

- NRT image processing (latency of 3-6 hours)
- Missions: Landsat-8/-9 and Sentinel-2
- Products: Chlorophyll-a, Total Suspended Solids (TSS), Secchi, and RGBs
- Processing engine: An in-house workflow (Aquaverse, including AC) validated using global in situ data
- Downloadable maps (Geotiff)
- Visualization

•

- Future work: Time-series analysis (daily/weekly/monthly)
 - Per-pixel queries
 - Lake-wide (area-based) queries

End-users (beta)

- Test productions over Peru, Uruguay, and select regions in North America and Africa
- https://ladsweb.modaps.eosdis.nasa.gov/stream/

Set data range to apply color gradient to:

0	-0-	
Mi	1	
0	•	2

🛍 😌 🚽

Aquaverse: An Aquatic Inversion Scheme for Remote Sensing of Fresh and Coastal Waters

Satellite Measurements

Atmospheric Correction Uncertainty Products Inverse Modeling 560 nm PC [mg m^{-3}] PC [mg m^{-3}] R_{rs}[sr-1] 102 10-2 10¹ 100 10^{-1} Rrs, BPs, IOPs → Uncertainty TOA → Rrs $Rrs \rightarrow IOPs$ and BPs **TOA radiance** Inverse modeling & **STREAM** uncertainty tutorials **STREAM: Stakeholder Access**

102

101

100

- 10-1

Acknowledgements

- Funding sources:
- OBB, RSWQ, EMIT, PACE
- NASA PACE Science and Applications Team
- NASA EMIT Science and Applications Team
- Landsat Science Team

AGU sessions

Ryan O'Shea: Mon.9 Dec.B11K,Poster #1459Ryan O'Shea: Tues.10 Dec.GC21W,Poster #0161Will Wainwright: Tues.10 Dec.H22D-0511:05-11:15Arun Saranathan:Tues.10 Dec.H23F,Poster #1070Akash Ashapure :Wed.11 Dec.IN31BPoster #2011Akash Ashapure :Wed.11 Dec.GC32A-0210:30-10:40

Inverse modeling & uncertainty tutorials

Using domain adaptation to improve Chlorophyll-a predictions from optical remote sensing data

Arun M. Saranathan^{1,2}, Mortimer Werther³, Ryan E. O'Shea^{1,2}, and Akash Ashapure^{1,2}

¹GSFC-619.0, NASA Goddard Space Flight Center. ²Freshwater Sensing Program, SSAI. ³Swiss Federal Institute of Aquatic Science and Technology

MODEL TRAINING AND VALIDATION

Satellite matchup datasets

Satellite matchup data: Collocated pair of satellite measured Rrs and near concurrent *in situ* chlorophyll-a measurements (~ +/- 4 hours).

- OLCI: 3101 matchup examples (AC methods: L2GEN)
- MSI: 2692 matchup examples (AC methods: Aquaverse)

Localized dataset, with slight differences in location, measurement time, acquisition conditions of the different datastreams.

Machine Learning Based Inversion Framework

MACHINE LEARNING MODEL

Machine Learning (ML) tools commonly use remote sensing reflectance (R_{rs}) as input and learn the mapping from this input to Chlorophyll-a (Chla).

 $R_{rs}(\lambda_1)$

 $R_{rs}(\lambda_k)$

 $R_{rs}(\lambda_n)$

ML approaches show excellent Chla estimation on *in situ* labeled datasets.

In situ vs Matchup data differences

Domain Adaptation

<u>Domain Adaptation Regression by Aligning Inverse Gram</u> Matrices (DARE-GRAM) [Nejjar et al. 2023]

Results

Model features visualization

Comparison of mean residuals (MAE) in Chlorophyll-a prediction

Sensor	MDN (Basic NN)	DARE-GRAM (Domain Adaptation)	% Gain
OLCI (N=3101)	12.426	4.923	<mark>60.38%</mark>
MSI (N=2692)	14.171	5.648	<mark>60.14%</mark>

Basic Neural Network- MDN

Domain Adaptation: DARE-GRAM

Results

- DARE-GRAM predictions exhibit a significant improvement in Chla estimation- across metrics.
- Investigate and address the bias present in the DARE-GRAM results.

Harmonization via Domain adaptation

- **Creating a concurrent Matchup dataset:** Scanned the OLCI and MSI matchup datasets to identify concurrent samples from the two. Based on this analysis identified 1035 common samples.
 - Samples have both OLCI and MSI Rrs, with corresponding *in situ* Chla.
 - Spatial Difference between OLCI and MSI Rrs pixels: < 200m.
 - Temporal difference between the OLCI, MSI and *in situ* measurements: <1 day (same date).
- Both the domain adapted models include "explicit domain matching" with the *in situ* (gloria) datasets leading to more harmonized results.

Conclusions

- By leveraging unlabeled satellite Rrs pixels in the training phase, domain adaptationbased methods appears to learn features that are less affected by the various distortion processes in satellite Rrs, leading to improved Chla estimation.
- The satellite Rrs feature distribution better matches the in situ Rrs feature distribution indicating more similarity between source and target features.

Future Works

- 1. Generate and compare spatial Chla from DARE-GRAM with corresponding MDN Chla maps.
- 2. Investigate the effect of the atmospheric correction on the performance of the domain adaptation algorithms.
- 3. Investigate the source of the bias present in the DARE-GRAM predictions. If not possible to eliminate correct by using model calibration approaches.

Acknowledgements

Funding sources:

- OBB, RSWQ
- NASA PACE Science and Applications Team
- NASA EMIT Science and Applications Team
- Landsat Science Team

Help and suggestions

- Dr. Nima Pahlevan
- Mr. Brandon Smith
- Dr. Sundarabalan V.B.

AGU sessions

Ryan O'Shea	: Mon.	9 Dec.	B11K,	Poster #1459
Ryan O'Shea	: Tues.	10 Dec.	GC21W,	Poster #0161
Will Wainwright	: Tues.	10 Dec.	H22D-05	11:05-11:15
Arun M. Saranathan	: Tues.	10 Dec.	H23F,	Poster #1070
Akash Ashapure	: Wed.	11 Dec.	IN31B	Poster #2011
Akash Ashapure	: Wed.	11 Dec.	GC32A-02	10:30-10:40

Inverse modeling & uncertainty tutorials

Phytoplankton communities quantified from hyperspectral ocean reflectance correspond to pigment-based communities

Sasha J. Kramer, Stéphane Maritorena, Ivona Cetinić, Jeremy Werdell, and David Siegel

skramer@mbari.org

DECEMBER 2024

Goal for today

Compare the composition and distribution of phytoplankton communities derived from

1) HPLC pigments and 2) hyperspectral $R_{rs}(\lambda)$

High Performance Liquid Chromatography pigments

Phytoplankton have different pigments; some can be used as biomarkers to separate certain groups.

Phytoplankton pigments affect absorption

Phytoplankton have different pigments; some can be used as biomarkers to separate certain groups.

Pigments link phytoplankton and ocean color

Phytoplankton pigments and taxonomy

Adapted from Kramer et al., 2022 Remote Sensing of Environment

Max five pigment-based groups separate in this dataset

Paired global dataset of hyperspectral $R_{rs}(\lambda)$ and **HPLC** pigments can be used to separate at most these five phytoplankton groups.

Kramer et al., 2024 Optics Express

Maximizing hyperspectral R_{rs} information content

Measured spectra

Maximizing hyperspectral R_{rs} information content

Measured spectra

Construct a generic hyperspectral model to reconstruct remote sensing reflectance:

 $R_{rs,mod}(\lambda) = f(a, b_b)$ where

$$a = a_{ph} + a_{dg} + a_{water}$$
 and

 $b = b_{bp} + b_{bwater}$

Maximizing hyperspectral R_{rs} information content

Measured spectra

Modeled spectra

They should look identical if our assumptions were correct

$$R_{rs}$$
 residual (δR_{rs}) = $R_{rs,meas}(\lambda) - R_{rs,mod}(\lambda)$

Use the reflectance residual (δR_{rs}) for further modeling...
Modeled SDP pigments vs. measured pigments

Adapted from Kramer et al., 2022 *Remote Sensing of Environment* with new data included in Kramer et al., 2024 *Optics Express*

What else can we do with the R_{rs} residual (δR_{rs})?

Adapted from Kramer et al., 2022 *Remote Sensing of Environment*

Network-based community detection analysis

Assign each sample to a community based on its associated characteristics.

Form communities that maximize within-group connections and weaken between-group connections.

Community detection analysis: 3 δR_{rs} communities

Community detection analysis: 3 δR_{rs} communities

Kramer et al., 2024 Optics Express

Three communities also separate from HPLC pigments

Global distribution of the three communities

Global distribution of the three communities

Kramer et al., 2024 Optics Express

 δR_{rs} communities

 δR_{rs} communities

 δR_{rs} communities

communities	Cyanos	49	17	6	74% of samples correctly assigned (120 of 162)
	Dia + Dino + Green	2	46	1	
	Haptos	1	15	25	
HPLC		Cyanos	Dia + Dino + Green	Haptos	

 $\delta R_{rs} \, communities$

Next steps

1) SDP model is currently being implemented for PACE to model phytoplankton pigments

2) $\delta R_{rs}(\lambda)$ spectra will be available as a product from SDP and PACE: compare variability in space and time, compare communities from PVST HPLC.

Thanks and acknowledgements

All researchers, technicians, captains, and crew who contributed to data collection, preparation, analysis, and submission (particular thanks to Ali Chase, Emmanuel Boss, Nils Haëntjens, Jason Graff, Brian VerWey, Collin Roesler, Heidi Sosik, Taylor Crockford, and Sue Drapeau).

Thank you to Dylan Catlett for SDP model development support.

Thanks to the EXPORTS, NAAMES, and PACE science teams, and to Colleen Durkin & the Carbon Flux Ecology lab at MBARI.

Funding sources for work shown here: NDSEG Fellowship, NASA Ocean Biology and Biogeochemistry, Simons Foundation Postdoctoral Fellowship in Marine Microbial Ecology, David and Lucile Packard Foundation. Kramer et al., 2024 *Optics Express*

SIN NS FOUNDATION

Seasonal variability of surface ocean carbon uptake and chlorophyll-a concentration in the West Antarctic Peninsula

Jessie Turner, UConn ➡ ODU (Jan 2025)

Co-Authors: Heidi Dierssen, Dave Munro, Amanda Fay, Sharon Stammerjohn, Heather Kim

Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024

Is the Southern Ocean a CO₂ Sink? Preindustrial CO₂ flux Modern CO₂ flux mol/m2/yr mol/m2/yr

13th Carbon Mitigation Initiative Annnual Report

https://cmi.princeton.edu/annual-meetings/annual-reports/year-2013/quantifying-the-ocean-carbon-sink/

Southern Ocean thought to be one of the largest sinks of

anthropogenic CO_2 in the global ocean...

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024 233

Is the Southern Ocean a CO₂ Sink?

- How much CO₂ does the Southern Ocean really take up?
- Even the *sign* is uncertain:

(Long et al. 2021, Science)

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024 ²³⁴

Is the Southern Ocean a CO₂ Sink?

- How much CO₂ does the Southern Ocean really take up?
- Even the *sign* is uncertain:

- What about specific regions?
- How does it vary with latitude?
- Can ocean color help us?

(Long et al. 2021, Science)

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024 235

Regional case study: West Antarctic Peninsula

Regional case study: West Antarctic Peninsula

- Legacy of in situ observations LTER 1990-2024
- Rapidly warming
- Sea ice decline
- Glacial retreat
- Collaboration to incorporate ocean optics

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024 237

Methods

20 years of ship-track in situ pCO_2 data

(2000-2020, binned to monthly data)

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024 239

Methods

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024

Results

Turner et al. GRL (In Revision)

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024 ²⁴¹

Tightly coupled biology and CO₂ uptake

Jessie Turner, Lightning Talk for NASA OBB Virtual Meeting, December 5, 2024

242

Tightly coupled biology and CO₂ uptake

243

I am actively recruiting students for Fall 2025 and 2026 at Old Dominion University in Norfolk, Virginia

Contact: jturners@odu.edu

ome / College of Sciences / Ocean & Earth Sciences

 $(\dot{\mathbf{0}})$

Ocean & Earth Sciences

The Department of Ocean & Earth Sciences acquires and disseminates knowledge of the earth system, including the relationships among the biological, chemical, geological and physical components of our planet. It is critical that we understand both natural and human-induced processes that change this system so we are prepared to meet present and future challenges.

Acknowledgements

Postdoc mentor: Heidi Dierssen, UConn

Collaborators on Antarctica work:

- Michael Cappola, UDel
- Sharon Stammerjohn, CU Boulder
- Oscar Schofield, Rutgers
- Dave Munro, CU Boulder
- Heather Kim, WHOI
- Maria Kavanaugh, OSU
- Hilde Oliver, WHOI
- Amanda Fay, Columbia/Lamont-Doherty

Western Antarctic Peninsula and South Shetland Islands, September 16, 2021 (HawkEye)

246

Questions?

Contact: jturners@odu.edu