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Outline

1. Why do we use Machine Learning (ML) for aquatic remote sensing?

2. Why is the uncertainty estimation important in ML?

3. What are Mixture Density Networks (MDNs)? How to perform uncertainty estimation 
for MDNs?

4. Do ML estimated uncertainty metrics need calibration?

5. How do MDN-derived uncertainties appear in satellite products?
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Monitoring water bodies using spectral remote sensing data
• Spectral datasets allow for clear discrimination of water column components.
• Data available from a variety of sensors at different spectral resolutions.

August 2011
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Machine learning based spectral inversion framework

Rrs(λ1)

Rrs(λk)

Rrs(λn)

Chla Chlorophyll a

PC Phycocyanin

TSS Total Suspended 
Sediment

CDOM Colored dissolved 
organic matter

Machine Learning (ML) tools commonly used for the estimation
of Water Quality Indicators (WQI) from remote sensing
reflectance (Rrs).

§ Mixture Density Networks (MDN)1
§ Bayesian Neural Networks with MC-dropout (BNN-MC)2
§ eXtreme Gradient Boosted Trees (XGB)3
§ Support Vector Machines/Regression (SVM)4

ML approaches show excellent WQI estimation on available
labeled datasets.

Rrs

WQI

1 MDN References
Pahlevan et al. 2020, Smith et al. 2021, 
O’Shea et al. 2021, Pahlevan et al. 2022

2 BNN-MC References
Werther et al. 2022

3 xGB References
Cao et al. 2020

4 SVM References
Kwiatkowska et al., 2003,
Zhan et al. 2003
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The need for uncertainty

• ML models function as black boxes
§ Performance only guaranteed for test samples 

like the training samples.
§ For practical applications need a way to 

identify Out-of-distribution (OOD) samples.

• Sources of uncertainty in ML
§ Aleatoric (or random) uncertainty
§ Epistemic (or knowledge based) 

uncertainty

5
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Mixture Density Networks (MDNs)

• Neural network variant that estimates the output as mixture of Gaussians.
§ The Gaussians are chosen to maximize the probability of the expected output for the training samples.
§ Designed for scenarios wherein the output distribution is expected to be multimodal.

Water color spectrum

TSS

acdom
(440)

PC

Chla
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Mixture Density Networks (MDNs)
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• Neural network variant that estimates the output as mixture of Gaussians.
§ The Gaussians are chosen to maximize the probability of the expected output for the training samples.
§ Designed for scenarios wherein the output distribution is expected to be multimodal.



Uncertainty Estimation for MDNs5
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Since the MDN output is probabilistic in nature, the uncertainty can be estimated from the 
predicted distribution:

§ Prediction uncertainties have been shown to be well approximated by the variance of the 
estimated distribution.

§ Further, the variance can be decomposed in aleatoric and epistemic components.
5 MDN-uncert References
Choi et al., 2018
Saranathan et al., 2023



Uncertainty Estimation for MDNs
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Key:
𝑥!: Remote Sensing Reflectance
𝑦!: Water optical parameters
σ: standard deviation
𝜋!: likelihood of the ith MDN component
𝜇!: mean of the ith MDN component
Σ!: variance of the ith MDN component



Uncertainty Estimation for MDNs
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aleatoric epistemic

epistemic uncertainty

Key:
𝑥!: Remote Sensing Reflectance
𝑦!: Water optical parameters
σ: standard deviation
𝜋!: likelihood of the ith MDN component
𝜇!: mean of the ith MDN component
Σ!: variance of the ith MDN component



Sample MDN estimated uncertainties

• High confidence samples
§ Distribution appears unimodal.
§ Low variance in individual components.
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• Low confidence samples
§ Distribution appears to have many 

well-separated modes (peaks).
§ Components with a very large spread 

(variance) indicating model 
uncertainty.



GLORIA6: A Large (N=~8,237) Globally Distributed In situ Dataset
for training and testing the MDNs

In situ measurements
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6 GLORIA
Lehmann et al. (2023)



GLORIA6: A Large (N=~8,237) Globally Distributed In situ
Dataset for training and testing the MDNs

• Contains samples over ~3-4 orders of magnitude concentration range
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6 GLORIA
Lehmann et al. (2023)



Validate the estimated uncertainty
• The MDN uncertainty metric successfully identifies

unexpected data conditions, such as:
§ Noisy Test Data
§ Noisy Training Data
§ Out-of-Distribution samples
§ Atmospheric Distortion

• The uncertainty metrics also show a clear correlation
between the error and uncertainty.
§ Allows the use of uncertainty as a proxy for error in

some cases.

• Even for satellite data can qualitatively verify that
prediction uncertainty is related to test-training
similarity. 14

MDN estimated Chla and associated uncertainty maps over 
near concurrent measurements over San Francisco Bay 
from Saranathan et al, 2022 (TGRS).

March 16th, 2016



Interpret the MDN estimated uncertainty metric
• The MDN uncertainty metric while 

valuable is hard to interpret
§ The scale of the metric is based on 

properties of the model.
§ Understanding/Interpreting the 

maps takes identification of a 
map-specific scaling.

§ The scale of the original metric is 
not intuitive.

• Need to modify/calibrate the 
metric to make it “human-friendly”.

15

Product Estimates Unscaled uncertainty

MDN estimated WQI products and associated (unscaled) uncertainty maps from OLCI data 
over Chesapeake Bay.

March 4th, 2017



Calibrate the estimated uncertainty for human interpretability

• Identify a simple multiplicative factor based on the predicted value to map the uncertainty into a 
usable space.

• The calibration translates the uncertainty to the same space as the predicted values making 
interpretation more intuitive.

Labeled dataset with 
uncertainties.

[𝑥! , 𝑦! , $𝑦! , 𝜎!] Estimate and sort the 
ratios of predictive error 

to uncertainty in each 
interval

Partition the data 
into intervals based 

on TSI

Calibration Factor= 
ratio of 80th

percentile sample

Apply interval specific 
multiplier to uncertainty 
metric for each 
prediction
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Estimate uncertainty for satellite data over Chesapeake 
Bay: OLCI Data

• Currently, generating scaled and unscaled uncertainty products for many different 
sensor/spectral resolutions
• Showing the OLCI results as a proxy for the expected results on the PACE mission

Acolite-processed imagery

Product Estimates Unscaled uncertainty Calibrated uncertainty
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March 4th, 2017



Estimate uncertainty for satellite data over 
Chesapeake Bay: HICO Data

Product Estimates Unscaled uncertainty Calibrated uncertainty

L2GEN-processed imagery

Similar products can also be extracted for hyperspectral data extracted from the HICO sensor
18

April 1st, 2010



Conclusions

• The MDN uncertainty metric clearly addresses the missing component of confidence 
associated with the model’s prediction.
• Very useful for identifying unexpected data conditions (noisy/distorted data or OOD samples).
• Clear correlation between error and MDN estimated uncertainty.

• The calibration technique appears to make the estimated uncertainty metric more intuitive 
for the end-users.
• Operational Caveat: Most of the model creation and validation is performed using low noise in 

situ data and statistical guarantees may not extend to satellite data products.

19



Future Work

• Uncertainty Estimation
• Compare the MDN-specific uncertainty estimates to estimates from other machine learning methods such as

BNN-MC, ensemble of MLP’s, etc..

• Identify/isolate the main factors affecting the amount of uncertainty seen in these models.

• Uncertainty Metric Calibration

• Experiment with other non-interval based methods for uncertainty calibration.

• Include end-user suggestion into the calibration process to generate the most useful/informative products

• For any questions/comments or general interest, please contact me at
arun.saranathan@ssaihq.com

20Acknowledgement: This work was funded by the NASA PACE Science and Applications Team.
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Additional 
Slides
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MDN model prediction performance for WQI
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MDNs perform admirably on in-
distribution test samples for 
many different sensors.

§ Showing results @ PACE 
proxy OLCI (S3A) and 
HICO resolutions.



Effect of noise on MDN performance and uncertainty
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The uncertainty metric is clearly able to track the presence of increased noise in the test 
samples. Further the increase in uncertainty also corresponds to a decrease in the MDNs 
prediction performance.



Effect of OOD samples on MDN performance and 
uncertainty
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The uncertainty metric is clearly able to track the presence of OOD samples. Clearly, the 
uncertainty increases when the distance of the test samples from the training samples 
increases.



Uncertainty Metric dependance on Data

• The estimated uncertainty metric for samples in specific Chla ranges clearly seems to depend 
on the number of training samples present in that range.

• The uncertainty metric scale seems very different from the predicted values.
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Uncertainty correlation with predicted error
• Even for medium-resolution 

multispectral sensors there is 
clear correlation between error 
and uncertainty

26



MDN Model properties and Hyperparameters
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Data Preprocessing:
Rrs: intra-quartile scaling
WQI: Log-Scaling + MinMax
scaling [-1, 1]

Hyperparameter Chosen Value Comments

Layers 8

Nodes/Layer 225

# of Gaussian 
Components

5

Activation ReLU

Layer L2-
normalization

0.01

Dropout N/A Experiments with this 
hyperparameter are 
ongoing

Epochs 250 epochs

Batch Size 128

Imputation Dynamic Fills in best value 
based on current 
model state.

Missing value have no effect 
of the estimated gradient.
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