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Introduction 

PyTOAST generates simulated top-of-atmosphere Level-1B files for the PACE Ocean Color 

Instrument (OCI). PyTOAST utilizes retrieved surface and atmospheric properties and top-of-

atmosphere (TOA) radiances from MODIS and VIIRS, pre-computed radiative-transfer look-up 

tables for the OCI spectral response, and spectral libraries of land and clouds to produce realistic 

radiometry in the standard Level-1B format (https://oceancolor.gsfc.nasa.gov/data/pace/format/) 

of OCI. The PyTOAST simulator is computationally efficient, and thus allows for large scale 

production of multi-day global data distributions with realistic viewing geometries for testing of 

retrieval software mechanics and data flow.  

Theoretical Background 

Clear sky over the ocean model 

The simulator is based on a radiative coupling of various components of the atmosphere, ocean, 

and land surfaces as an inverse process to the atmospheric correction (Mobley et al., 2016). For a 

clear ocean pixel, the top-of-atmosphere (TOA) reflectance is calculated as follows: 

𝜌𝑡(𝜆; 𝐺𝑒𝑜𝑚) = (𝜌𝑝𝑎𝑡ℎ(𝜆; 𝐺𝑒𝑜𝑚) + 𝜌𝑤
′ (𝜆; 𝐺𝑒𝑜𝑚) + 𝜌𝑠𝑢𝑟𝑓𝑎𝑐𝑒

′ (𝜆; 𝐺𝑒𝑜𝑚)) × 𝑇𝑔(𝜆; 𝐺𝑒𝑜𝑚). (1) 

The TOA reflectance is a function of 𝐺𝑒𝑜𝑚 (i.e. solar zenith; 𝜃0, sensor zenith 𝜃, and relative 

azimuth 𝜑), and wavelength, 𝜆; 𝜌𝑝𝑎𝑡ℎ(𝜆; 𝐺𝑒𝑜𝑚) is the path reflectance due to scattering and 

absorption by air molecules (Rayleigh scattering) and aerosols; 𝜌𝑤
′ (𝜆; 𝐺𝑒𝑜𝑚) is the ocean body 

reflectance, and 𝜌𝑠𝑢𝑟𝑓𝑎𝑐𝑒
′ (𝜆; 𝐺𝑒𝑜𝑚) is the reflectance contribution from surface glint and 

whitecaps, where both 𝜌𝑤
′ (𝜆; 𝐺𝑒𝑜𝑚) and 𝜌𝑠𝑢𝑟𝑓𝑎𝑐𝑒

′ (𝜆; 𝐺𝑒𝑜𝑚) are expressed at the TOA after 

propagation through the atmosphere. 𝑇𝑔(𝜆; 𝐺𝑒𝑜𝑚) is the two-way absorbing gas transmittance 

along the solar and sensor zenith. In the following sections we will briefly discuss each of the 

above terms. 

Path reflectance: 

The path reflectance is a summation of two terms, the Rayleigh reflectance and the aerosol 

reflectance including the aerosol-Rayleigh interaction: 

𝜌𝑝𝑎𝑡ℎ(𝜆; 𝐺𝑒𝑜𝑚) = 𝜌𝑟(𝜆; 𝐺𝑒𝑜𝑚) + 𝜌𝑎(𝜆; 𝐺𝑒𝑜𝑚). (2) 

https://oceancolor.gsfc.nasa.gov/data/pace/format/
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The 𝜌𝑟(𝜆; 𝐺𝑒𝑜𝑚) term is calculated through the tabulation of vector radiative transfer (VRT) 

simulations. The Rayleigh optical depth, which is input to the VRT code, is calculated from 

Bodhaine et al. (1999). Although the path reflectance term is shown in Eqs. (1) and (2) as a function 

of only wavelengths and geometry, the Rayleigh reflectance is also a function of atmospheric 

surface pressure and surface windspeed, where the surface roughness model is based on the Cox-

Munk windspeed to wave slopes relationship and the effect of pressure variation is modeled from 

Wang (1995). 

The second term in Eq. (2) is the aerosol reflectance, which is calculated through the VRT code 

for 80 different aerosol models from Ahmad et al. (2010), where the microphysical properties of 

the aerosol models are calculated for a pre-determined set of 8 near-surface atmospheric relative 

humidities and 10 fine-mode volume fractions, and the aerosol vertical profile in the atmosphere 

is based on the Shettle and Fenn model (Shettle and Fenn 1979). The aerosol reflectance 

calculations include effects of multiple scattering and molecule-aerosol interaction within the 

atmosphere. The molecule-aerosol diffuse transmittance along the solar and sensor directions, 

𝑡𝑠𝑜𝑙(𝜆, 𝐺𝑒𝑜𝑚) and 𝑡𝑠𝑒𝑛(𝜆, 𝐺𝑒𝑜𝑚), respectively, is also calculated and tabulated from the VRT 

simulations, and used to propagate the water and surface reflectance to the TOA. 

To increase the speed of the aerosol reflectance computations, the Principal Component Analysis 

(PCA) method was used to reduce the dimension of the aerosol LUTs for each aerosol model. The 

dimension reduction using PCA brings the size of the LUT from 286 different bands to 30 principal 

components, significantly reducing the size of the LUTs and the processing time for each pixel. 

The number of principal components was chosen so that the reconstructed reflectances have errors 

well below the measurement uncertainty of OCI (i.e., <<0.5%). The aerosol reflectance is first 

standardized by subtracting the mean and dividing by the standard deviation of the data samples. 

The covariance matrix of the dataset is then calculated, and an eigen decomposition is performed 

to calculate the eigenvectors or the principal components. These principal components, along with 

the mean and standard deviation vectors, are stored in the LUTs rather than storing the direct 

reflectances. Thus, for each pixel, the LUT interpolation over the geometry and optical depth is 

performed over the principal component dimension rather than the larger wavelength dimension. 

After the interpolation step, the principal components are then converted to the wavelength 

dimension by applying the inverse PCA. 

Ocean reflectance: 

𝜌𝑤
′ (𝜆; 𝐺𝑒𝑜𝑚) is the ocean reflectance at TOA. The bottom of atmosphere (BOA) ocean reflectance 

𝜌𝑤(𝜆; 𝐺𝑒𝑜𝑚) is calculated through a forward model that provides the ocean reflectance as a 

function of chlorophyll-a (Chl-a; mg m-3) concentration, 𝐺𝑒𝑜𝑚 and spectral inherent optical 

properties (IOPs; absorption and scattering coefficients). The BOA reflectance contribution is 

attenuated by the diffuse transmittance of the atmosphere, such that 𝜌𝑤
′ (𝜆; 𝐺𝑒𝑜𝑚) =

𝑡𝑠𝑒𝑛(𝜆, 𝐺𝑒𝑜𝑚) ×  𝜌𝑤(𝜆; 𝐺𝑒𝑜𝑚). The BOA ocean reflectances are generated from an ocean 

reflectance model (ORM) that derives the above-water remote sensing reflectance, Rrs(𝜆; sr-1), 

which is converted from nadir geometry to the desired solar and sensor path geometries using the 

bidirectional reflectance distribution function (𝑓𝑏𝑟𝑑𝑓) of Morel et al. 2002,  and then propagated to 

the TOA as: 
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𝜌𝑤
′ (𝜆; 𝐺𝑒𝑜𝑚) =  𝜋𝑅𝑟𝑠𝑡𝑠𝑜𝑙𝑡𝑠𝑒𝑛 𝑓𝑏𝑟𝑑𝑓⁄ . (3) 

In PyTOAST, Rrs(𝜆) is derived using the ocean reflectance model (ORM) of the Generalized 

Inherent Optical Property algorithm framework (GIOP) (Werdell et al. 2013). The default 

configuration of the GIOP is currently used to derive OB.DAAC’s distributed IOP data products1. 

Thus, by taking GIOP-derived level-3 IOP data products and returning them to the GIOP ORM 

forward model, one can closely approximate the original Rrs(𝜆) observed by the ocean color sensor 

(e.g. MODIS, VIIRS) as well as simulate Rrs(𝜆) at bands of other sensors such as OCI. 

The GIOP ORM uses the quasi-single scattering approximation (QSSA) of (Gordon et al. 1988) 

that models the spectral remote sensing reflectance just below the air-ocean interface, rrs(𝜆), as a 

function of the total absorption (a(𝜆); m-1) and backscattering coefficients (bb(𝜆); m-1):  

𝑟𝑟𝑠(𝜆, 0−) = 0.0949𝑢(𝜆) + 0.0794𝑢(𝜆)2, (4) 

where, 

𝑢(𝜆) =
𝑏𝑏(𝜆)

𝑏𝑏(𝜆)+𝑎(𝜆)
 (5) 

The spectral coefficients a(𝜆) and bb(𝜆) are additive terms and expressed as: 

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑀𝜙𝑎𝜙
∗ (𝜆) + 𝑀𝑑𝑔𝑎𝑑𝑔

∗ (𝜆) , and (6) 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑀𝑝𝑏𝑏𝑝
∗ (𝜆) , (7) 

where w represents water,  represents phytoplankton, dg represents colored dissolved and detrital 

matter, and p represents particulate matter. The terms with superscript asterix (*) represents 

normalized spectral coefficients with values of 1.0 at 443 nm. The M , Mdg, and Mp terms are 

scalar magnitudes coefficients and represent a(443), adg(443), and bbp(443), respectively.  

We treat both the absorption coefficient of water, aw(; m-1), and the backscattering coefficient of 

water, bbw aw(; m-1), as spectral constants (Pope and Fry 1997; Zhang et al. 2009). The spectral 

shape for the absorption coefficient of colored dissolved and detrital matter, a*dg(), was modelled 

using an exponential model of the form: 

𝑎𝑑𝑔
∗ (𝜆) = 𝑒−0.018(𝜆−443) (8). 

The spectral shape of the particulate backscattering coefficient was modelled as: 

𝑏𝑏𝑝
∗ (𝜆) = (

443

𝜆
)

𝛾
 (9), 

 
1 https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L2/IOP/2018/ 
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where the power law exponent, , is defined per Lee et al. (2002). 

The spectral shape of the absorption coefficient of phytoplankton in the visible domain, a*,,VIS(), 

is modelled following (Bricaud et al. 1998). First, a() is modelled as a function of Chl-a and two 

spectral constants A(𝜆) and B(𝜆): 

𝑎𝜙,𝑉𝐼𝑆(𝜆) = 𝐴(𝜆) [Chl-a]B()-1. (10) 

Then, a*,VIS() is then computed as: 

𝑎𝜙,𝑉𝐼𝑆
∗ (𝜆) = 𝑎𝜙,𝑉𝐼𝑆(𝜆)/𝑎𝜙,𝑉𝐼𝑆(443). (11) 

One limitation of the Bricaud et al. (1998) bio-optical model is that the spans only the visible 

spectral range (400 – 700 nm). For OCI simulated data, we wish to span the range (300 – 900 nm). 

To address this, we used 153 a() previously extracted from NASA’s SeaBASS archive that range 

250 – 800 nm (McKinna and Werdell 2019) to extend a() into the UV and NIR range. In the 

NIR, all 153 spectra were normalized to 1.0 at 700nm and an exponentially decaying function was 

fit through the data. From this analysis, the following model was determined for the spectral shape 

of phytoplankton in the NIR: 

𝑎𝜙,𝑁𝐼𝑅
∗ (𝜆) = 55.123𝜆−0.0789  (when  > 700 nm). (12) 

For the UV domain (300 – 400 nm), the 153 a() spectra were normalized to 1.0 at 400 nm and 

then spectrally averaged. The result, a*,UV(), was then smoothed with a gaussian kernel filter to 

remove residual noise/artifacts. The a*,UV() data are recorded in Table 2. We recognize that a() 

exhibits notable variability in the UV (e.g., see Figure 5 in Bricaud et al. (2010)), however, for 

purpose of testing software capabilities and data flow our simplified representation of a*,UV() 

should be sufficient. 

The a*,() spectrum over the UV-VIS-NIR spectral range is then assembled as: 

𝑎𝜙
∗ (<  400) = 𝑎𝜙,𝑈𝑉

∗ (𝜆 <  400) × 𝑎𝜙,𝑉𝐼𝑆
∗ (400), (13a) 

𝑎𝜙
∗ (400 ≥ 𝜆 ≥ 700) = 𝑎𝜙,𝑉𝐼𝑆

∗ (𝜆), (13b) 

𝑎𝜙
∗ (𝜆 > 700) = 𝑎𝜙,𝑁𝐼𝑅

∗ (𝜆 > 700) × 𝑎𝜙,𝑉𝐼𝑆
∗ (700). (13c) 

Finally, Rrs(𝜆) is then calculated as follows (Lee et al., 2002): 

𝑅𝑟𝑠(𝜆) =
0.52𝑟𝑟𝑠(𝜆,0−)

1.0−1.7𝑟𝑟𝑠(𝜆,0−)
.  (14) 

The input values for a(443), adg(443), and bbp(443), and  in the ORM are from GIOP-derived 

level-3 IOP data products from VIIRS/MODIS-Aqua. The ORM generates a reliable surface 
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reflectance Rrs(𝜆; sr-1) for the full visible spectrum (Werdell et al., 2013) however it does not 

directly account for inelastic scattering, or chlorophyll fluorescence.  

Ocean surface reflectance: 

The surface reflectance, 𝜌𝑠𝑢𝑟𝑓𝑎𝑐𝑒
′ (𝜆; 𝐺𝑒𝑜𝑚), is the light scattered by the air-sea interface. It has 

two terms: the direct sun glint reflectance and the whitecap reflectance, both of which are driven 

by the ocean surface windspeed. It’s important to remember that the sky glint reflection was 

calculated through the VRT model of the Rayleigh signal. The direct glint signal, however, is 

calculated by the two-way attenuation of the direct solar beam that is modulated by the surface 

glint reflectance, 𝐿𝐺𝑁(𝜆), which is modeled using Cox and Munk (1954) wave slope statistics. The 

TOA direct glint reflectance is then 𝜋𝐿𝐺𝑁𝑇𝑠𝑜𝑙𝑇𝑠𝑒𝑛 𝜇0⁄ , where 𝜇0 is the cosine of the solar zenith 

angle, and spectral (and geometric for T) dependency is implied. 

The whitecap irradiance reflectance at the BOA, 𝜌𝑤𝑐(𝜆), is based on Koepke (1984) combined 

with  the windspeed-dependent fractional coverage model of Stramksa and Petelski (2003) and the 

whitecap albedo spectral-dependence in the red and near-infrared from Frouin et al. (1996). The 

BOA irradiance reflectance is then propagated to TOA similar to the ocean reflectance as 

𝜌𝑤𝑐𝑡𝑠𝑜𝑙𝑡𝑠𝑒𝑛 , with spectral and geometric dependency implied. 

Absorbing gas transmittance: 

The PyTOAST simulator accounts for the main absorbing gases in the atmosphere, including 

ozone, water vapor, and oxygen. The water vapor and oxygen transmittance are based on the 

HITRAN 2020 line by line (LBL) spectroscopic dataset (Gordon et al., 2022). The LBL 

transmittance for different column water vapor (cwv) values is calculated assuming the US 

standard atmospheric profile. Instrument spectral response functions are then applied to the LBL 

transmittances, which are then stored in an instrument-specific LUT. During simulation, the 

spectral water vapor transmittance at each 𝐺𝑒𝑜𝑚, 𝑇𝑤𝑣, are interpolated from the LUT for a given 

slanted water vapor (wv) concentration along the path as 𝑐𝑤𝑣 𝜇⁄ , where 𝜇 is the cosine of the path 

zenith angle. The oxygen transmittance is calculated similarly for different path lengths of the 

atmosphere given the observation geometry. The ozone transmittance is calculated from the ozone 

optical depth assuming Beer’s law, where the optical depth is determined from the spectral ozone 

absorption coefficient and the ozone concentration. The ozone absorption coefficients are 

tabulated from (Serdyuchenko et al., 2014), and spectrally integrated with the sensor spectral 

response functions. 

Clear sky land model 

Similar to propagating the ocean surface reflectance to TOA, the land reflectance at the bottom of 

the atmosphere is propagated to TOA by accounting for the diffuse transmittance of the aerosols 

and air molecules as follows: 

 

𝜌𝑠𝑢𝑟𝑓𝑎𝑐𝑒
′ (𝜆; 𝐺𝑒𝑜𝑚) =  𝜌𝑙𝑎𝑛𝑑(𝜆; 𝐺𝑒𝑜𝑚)𝑡𝑠𝑜𝑙(𝜆; 𝐺𝑒𝑜𝑚)𝑡𝑠𝑒𝑛(𝜆; 𝐺𝑒𝑜𝑚). (15) 
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𝜌land is the land reflectance model. Per pixel land reflectance is determined using a land albedo 

climatology file containing MODIS and TROPOMI data across 14 select wavelengths (328-2314 

nm). The MODIS data is a global 1km resolution climatology of the surface albedo made up of 

the average of 17 years of data for 2001-2017. The data observed by TROPOMI is a Surface 

Lambertian-equivalent reflectivity (LER) at 0.125 degree resolution created from 2018 to 2021. 

The combined data product has a resolution of 0.125 degrees and is extrapolated to fill in the 

wavelength gaps at hyperspectral resolution. Pixels with negative NDVI values were determined 

to be snow-covered and a static snow reflectance was assigned to those locations. The global NDVI 

data were obtained from the ECOSTRESS spectral library (https://speclib.jpl.nasa.gov/). 

 

 
Figure 1. Global map of NDVI. This data is used to define which pixels are snow-covered 

(negative). 

 

 
Figure 2. Global land albedo map at 555 nm from MODIS. This is one of the selected bands that 

makes up the 14-band land reflectance climatology file that is used in the simulation. 

https://speclib.jpl.nasa.gov/
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The cloudy-sky model 

Cloud coverage is defined using a VIIRS L3 mapped file (global 2km dailies) that includes cloud 

albedo and TOA radiance at 551nm. Pixels are first classified as either water or land, according to 

the standard input water mask. The cloud albedo is then used to identify where clouds exist over 

water. The input land albedo is similarly used to identify where clouds exist over land. 

The hyperspectral OCI reflectances for cloudy pixels are created from clouds simulated with 

version 2.0.4 of the libRadtran radiative transfer package (freely available from 

http://www.libradtran.org/doku.php with the package described by Emde et al., 2016). The 

simulation was done with the scalar cdisort solver (16 streams per hemisphere, run in 

pseudospherical mode) using the in-built medium-resolution REPTRAN trace gas absorption 

parametrization for a US standard atmosphere (Gasteiger et al., 2014). This includes Rayleigh 

scattering for a surface pressure of 1 atm, and aerosols from the built-in “default” model with an 

optical thickness of 0.14 at 550 nm and Ångström exponent of 1 (Emde et al., 2016). Sensitivity 

to assumed aerosol properties within common real-world background conditions is minor. 

Simulations were done at REPTRAN’s medium spectral resolution of 5 cm-1, which translates to 

about 0.08 nm at 400 nm, 0.26 nm at 750 nm, and 2.6 nm at 2200 nm (somewhat finer than OCI’s 

bandwidth in all cases). These were then convolved with OCI RSRs using numerical (trapezoid) 

integration and the PACE standard solar spectrum (Coddington et al., 2021). 

Lookup table (LUTs) of simulated OCI spectra was created, with an angular spacing of 5, 7.5, and 

20 degrees in solar zenith, viewing zenith, and relative azimuth angles, respectively. For all cases, 

the surface is assumed to be black (i.e. albedo of 0 at all wavelengths) and the cloud optical 

thickness (COT) at 550 nm is 10. There are two LUTs: one for liquid-phase clouds with a top cloud 

effective radius (CER) of 11 µm (and varying through the cloud following an adiabatic profile), 

and one for ice using the severely-roughened 8-element column aggregates model of Yang et al., 

(2013) with CER dependent on top altitude following van Diedenhoven et al. (2020), typically 25-

40 µm (and increasing from cloud top to base by 3 µm km-1 above 7.5 km, and 6 µm km-1 below). 

Both types are modeled as 5 sublayers with variable CER and water content. Water content 

decreases and increases linearly through the clouds from top to base for liquid and ice clouds 

respectively. Single-scattering property data bases for these cloud types are also provided within 

libRadtran. 

The LUTs are each generated for a set of 5 different cloud top heights (CTHs): 1, 2, 3, 4, and 5 km 

for liquid, and 5, 7, 9, 11, and 13 km for ice. Cloud geometric depth is taken as 50% of the vertical 

column for liquid clouds and 25% for ice. For the PyTOAST forward calculation, the CTH (in km) 

is determined as (290-BT11)/6.5 where BT11 is the VIIRS brightness temperature (BT) for band 

M15 (centred near 11 microns). To a first order, this approximates a cloud over a surface at 290 K 

with an atmospheric lapse rate of 6.5 K km-1. The ice LUT is used if the resulting CTH would be 

http://www.libradtran.org/doku.php
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5 km or higher (i.e., BT of 257.5 K or cooler). The LUTs are interpolated linearly in PyTOAST, 

and VIIRS BTs which would result in CTH outside the range 1-13 km are truncated at those values. 

The major limitation of the current data set is that all clouds are (fairly) opaque (COT=10) with no 

underlying surface. However, this offers computational simplicity of the code (no surface spectrum 

needs to be defined, no pixel-level COT field needs to be supplied, and with COT=10 retrieval 

results are in most cases likely fairly insensitive to an algorithm’s assumed COT) while (through 

variation of CTH) offering the ability to test the implementation of the at-launch cloud top altitude 

retrieval algorithm (Sayer et al., 2023) with a semi-realistic distribution of heights driven by VIIRS 

BT. A secondary limitation is the angular resolution of the LUTs, which could more easily be 

improved in future simulation versions. 

 

Figure 3: Simulated cloud reflectance at TOA for (a) liquid and (b) ice-phase clouds, as 

described in the text, as a function CTH (colours). These simulations are drawn from the cloud 

LUT for solar zenith, viewing zenith, and relative azimuth angles of 20, 30, and 60 degrees, 

respectively.  

Implementation 

PyTOAST flow diagram 

PyTOAST relies on modeling the TOA observations based on realistic geophysical data retrieved 

from ocean color sensors as well as global models such as MERRA-2. The figure below shows the 

flow diagram of data, where the orbit geometries from OCI, metrological data from MERRA-2, 

and Level-3 geophysical data from MODIS, VIIRS, and OMI are used as an input to the pre-

computed RT forward model LUT.  
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Figure 4: Flow diagram of PyTOAST 

 

A multidimensional interpolation process of the pre-computed LUT calculates the aerosol and 

molecular scattering, the gas absorption of the atmosphere, and the surface radiance of land and 

ocean, as well as the cloud reflectance. The output TOA radiance is then stored in a standard Level 

1B format NetCDF file. 

 

Figure 5 shows an illustration of the TOA radiance, Lt(𝜆), calculation for clear sky ocean pixels 

without clouds. The aerosol optical depth is obtained from the GMAO aerosol transport model, 

MERRA-2, at ~50 km spatial resolution. The aerosol radiance is calculated from the Angstrom 

coefficient, relative humidity, wind speed, ozone concentration, water vapor, and surface pressure, 

all coming from MERRA-2 at 50 km. The ORM model calculates the Rrs(𝜆) given the Chl-a 

concentration and IOPs (ADG_443, APH_443, BBP_443, BBP_S) from the Level-3 32-day 

rolling average from MODISA. Finally, the earth-sun distance is calculated for each pixel to adjust 

the TOA radiance level. 
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Figure 5: Illustration of the TOA radiance calculation for clear sky ocean pixel. 

 

Figure 6: An orbit example demonstrating the PyTOAST simulations of the TOA radiance as 

observed from OCI for March, 22nd , 2019. 

Cloudy pixels are located based on the VIIRS Level-3 cloud mask, where the hyperspectral TOA 

cloud radiance is scaled given the observed VIIRS TOA radiance at the mid-visible wavelengths. 
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Figure 6, shows an example of the simulated TOA radiance from PyTOAST for an OCI orbit for 

March 22nd 2019. The example shows the binned data for various 5-min OCI granules observed 

along the orbit. The simulation captures a large dynamic range of TOA radiances from ocean, land, 

and cloudy pixels. The gap along the tropical region is due to the tilting operation of the OCI 

instrument, as designed to minimize direct sun glint. 

Table 1: List of Acronyms 

Acronym Definition 

PyTOAST Python Top of Atmosphere Simulation Tool 

PACE Plankton, Aerosol, Cloud, ocean Ecosystem 

TOA Top of Atmosphere  

MODIS Moderate Resolution Imaging Spectroradiometer 

VIIRS Visible Infrared Imaging Radiometer Suite 

OCI Ocean Color Instrument 

LUT Look up table 

VRT Vector Radiative Transfer 

BOA Bottom of Atmosphere 

IOPs Inherent Optical Properties  

LBL Line by Line 

cwv Column water vapor 

OMI Ozone Monitoring Instrument 

UV Ultraviolet 

ECOSTRESS 
ECOsystem Spaceborne Thermal Radiometer 

Experiment on Space Station 

LibRadtran Library for radiative transfer 

cdisort 

C version of Discrete Ordinates Radiative Transfer 

Program 

 

REPTRAN Gas absorption parameterization library 

GMAO Global Modeling and Assimilation Office 

MERRA-2 
Modern-Era Retrospective Analysis for Research 

and Applications, Version 2 

NetCDF Network Common Data Form 

ORM Optical Radiometry Model 

VIS Visible spectrum 
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Table 2: Normalized spectral absorption coefficient for phytoplankton in the UV (300 – 400 nm). 

Wavelength 

(nm) 

𝒂𝝓,𝑼𝑽
∗  Wavelength 

(nm) 

𝒂𝝓,𝑼𝑽
∗  Wavelength 

(nm) 

𝒂𝝓,𝑼𝑽
∗  

300 8.169E-01 340 8.210E-01 380 8.300E-01 

301 8.168E-01 341 8.146E-01 381 8.387E-01 

302 8.165E-01 342 8.074E-01 382 8.473E-01 

303 8.160E-01 343 7.994E-01 383 8.557E-01 

304 8.152E-01 344 7.908E-01 384 8.639E-01 

305 8.141E-01 345 7.816E-01 385 8.716E-01 

306 8.129E-01 346 7.718E-01 386 8.790E-01 

307 8.116E-01 347 7.617E-01 387 8.860E-01 

308 8.106E-01 348 7.514E-01 388 8.927E-01 

309 8.098E-01 349 7.413E-01 389 8.992E-01 

310 8.093E-01 350 7.320E-01 390 9.059E-01 

311 8.091E-01 351 7.238E-01 391 9.128E-01 

312 8.091E-01 352 7.171E-01 392 9.202E-01 

313 8.091E-01 353 7.119E-01 393 9.280E-01 

314 8.091E-01 354 7.082E-01 394 9.363E-01 

315 8.091E-01 355 7.057E-01 395 9.452E-01 

316 8.092E-01 356 7.043E-01 396 9.546E-01 

317 8.096E-01 357 7.036E-01 397 9.648E-01 

318 8.105E-01 358 7.037E-01 398 9.757E-01 

319 8.118E-01 359 7.043E-01 399 9.874E-01 

320 8.136E-01 360 7.056E-01 400 1.000E+00 

321 8.156E-01 361 7.075E-01   

322 8.177E-01 362 7.102E-01   

323 8.198E-01 363 7.137E-01   

324 8.218E-01 364 7.179E-01   

325 8.235E-01 365 7.227E-01   

326 8.252E-01 366 7.279E-01   

327 8.267E-01 367 7.334E-01   

328 8.281E-01 368 7.391E-01   

329 8.295E-01 369 7.451E-01   

330 8.309E-01 370 7.514E-01   

331 8.323E-01 371 7.579E-01   

332 8.336E-01 372 7.648E-01   

333 8.347E-01 373 7.720E-01   

334 8.354E-01 374 7.796E-01   

335 8.355E-01 375 7.875E-01   

336 8.348E-01 376 7.957E-01   

337 8.331E-01 377 8.041E-01   

338 8.303E-01 378 8.127E-01   

339 8.262E-01 379 8.213E-01   
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