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Questions

> Since productivity is controlled by the rate at
which nutrients are supplied from below...

> Can estimates of productivity be used to
(passively) constrain vertical exchange?

> Since ocean color affects shortwave
absorption...

> Does ocean color actively constrain vertical
exchange?




Subgridscale mixing and vertical
exchange
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High vertical and lateral mixing can supply upwelling from tropics (this is
“traditional” conveyor belt. Low mixing, high SO winds offer an alternative.




Problem..

> Diagnostic models estimate what bioclogy
has to do to get rid of excess surface
nutrients (export production).

> Satellites see primary production.
> Need to link the two.




Dunne et al.
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Laws et al. fit is poor

because of high tropical
values.




Particulate export suggests that high vertical

mixing IS Inconsistent with observed fluxes

... but diagnostic models continue to have significant
problems in high latitudes (Gnanadesikan et al.,GBC, 2004).




Overalll syntheses

New Models/data
estimate

Global POC export
(GtClyr)

9.6£3.6 11.1-12.9 ( Laws et al., 2001)

6. 710 (Gnanadesikan et al., 2004)
9.6 (Schlitzer, 2004)

Global CaCO3
export (GtC/yr)

0.52£0.15 | 1.1 (Lee et al., 2001)
0.66-0. 76 (Gnanadesikan et al. 2004)
1.6-1.6 (Heinze et al., 2003,2004)

Global Si export
(T'mol/yr)

101£35 100-140 (Nelson et al., 1995)
60-90! (Gnanadesikan; 1999)
170 (Heinze et al., 1999)

Dunne, Sarmiento and Gnanadesikan, accepted GBC




Does ocean color passively
constrain vertical exchange?

> I'o some extent...(general consensus on
global particle export ~10GtC/yr)

> ...but uncertainties in primary: productivity
are ofi the same order of magnitude as
differences between models with different
subgridscale mixing.




Does plankion concentration directly
Constraln ocean Clrculatlon’?

nolds SST

Ballbrera-Poy et al. (2007)- answer would appear to be not very
much. But...

No thermodynamic feedbacks.
Base state has significant absorption.

Absorption increases along equator, decreases off-equator.




Strategy

> New model developed for the IPCC Fourth
Assessment. (Delworth et al., J. Clim. 2006,
Gnanadesikan et al., J. Clim, 2006)

> Use atmospheric, sea ice, land components
from IPCC model.

> Use isopycnal layer model for ocean.

> What I studies with this coupled climate
model.




Impact ofi removing ocean color on SST|
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Mechanism #1- local ML deepening

Equator
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Mixed

layer
deypth Ekman flow away from equator- independent of

mixed layer depth.

Geostrophic flow back towards equator- distributed
between mixed layer and upper thermocline.
Deeper mixed layers mean less net upwelling.

Anderson et al. (subm.), Sweeney et al., JPO, 2005 (similar results seen
by Shell, Manizza).




Mechanism #2: Off-equatoriall shading
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Global impacts-hydrological cycle
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Interannual drought in'N. America
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Conclusions

> New estimates of particle export are more
consistent with a picture in which there Is
relatively little vertical diffusion in low: latitudes.

> Shading of inflowing waters by off-equatorial
chlorophyll can have a major impact on the cold
tongue.

> Ocean biology can act as a positive feedback on
climate variability- depending on where it is.

> Ocean color can affect global climate- but results
are regionally dependent.




Issues for this, community.

> Ocean color matters for climate.
> Clear waters matter!
> Breakdown Into different components?

> Should we Incorporate in-water radiation
models?

> Albedo in clear water?
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