An Iterative Radiative Transfer Code For Ocean-Atmosphere Systems. J. Atmos. Sci., 39, 656-665. doi: 10.1175/1520-0469(1982)039<0656:airtcf>2.0.co;2
(1982).Atmospheric correction for NO_2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements. Applied optics, 46(26), 6504. doi: 10.1364/ao.46.006504
(2007).New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Applied optics 49, 5545-5560. doi: 10.1364/AO.49.005545
(2010).New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans: publisher's note. Applied optics, 50(5), 626. doi: 10.1364/ao.50.000626
(2011).Optical algorithm for cloud shadow detection over water. IEEE Transactions on Geoscience and Remote Sensing, 51(2): 732-741. doi: 10.1109/TGRS.2012.2204267
(2013).Assessing the application of cloud-shadow atmospheric correction algorithm on HICO. IEEE Geoscience and Remote Sensing Letters, 52(5): 2646-2653. doi: 10.1109/TGRS.2013.2264166
(2014).A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones. International Journal of Remote Sensing, 20(9), 1875-1916. doi: 10.1080/014311699212533
(1999).
A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1-2), 12-23. doi: 10.1016/j.rse.2006.01.015
(2006).Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics Express, 18(7), 7521. doi: 10.1364/oe.18.007521
(2010).Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. Journal of Geophysical Research 110, C07001. doi: 10.1029/2004jc002560
(2005).Comparison of SeaWiFS measurements of the moon with the U.S. geological survey lunar model. Applied optics, 43(31), 5838.doi: 10.1364/ao.43.005838
(2004).Reflectance-Based Calibration of SeaWiFS. II. Conversion to Radiance. Applied optics, 42(9), 1648. doi: 10.1364/ao.42.001648
(2003).Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6, 779-794. https://doi.org/10.5194/bg-6-779-2009
(2009).Optimizing the induction of alternating decision trees. Proceedings of the fifth Pacific-Asia conference on advances in knowledge discovery and data mining (2001), Advances in knowledge discovery and data mining, pp. 477-487. doi: 10.1007/3-540-45357-1_50
(2001)On Rayleigh optical depth calculations. Journal of Atmospheric & Oceanic Technology, 16, 1854-1861.doi: 10.1175/1520-0426(1999)016<1854:orodc>2.0.co;2
(1999).Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region. Journal of Photochemistry and Photobiology A: Chemistry, 157(2-3), 167-184. doi: 10.1016/s1010-6030(03)00062-5
(2003).Assessing water quality in the northern Adriatic Sea from HICO data Remote Sensing Letters, 4(10): 1028-1037. doi: 10.1080/2150704X.2013.830203
(2013).Variations of light absorption by suspended particles with chlorophyllaconcentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research: Oceans, 103(C13), 31033-31044. http://dx.doi.org/10.1029/98jc02712
(1998).MODIS Infrared Sea Surface Temperature Algorithm - Algorithm Theoretical Basis Document. University of Miami. p. 1-83.
(1999).Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm. Geophys. Res. Lett., 21(7), 581-584. doi: 10.1029/93gl02311
(1994).
Surface velocities from multiple-tracer image sequences IEEE Geoscience and Remote Sensing Letters, 9, 769-773. doi: 10.1109/LGRS.2011.2181328
(2012).Out-of-band correction for multispectral remote sensing IEEE Transactions on Geoscience and Remote Sensing, 51(4): 2476-2483. doi: 10.1109/TGRS.2012.2208975
(2013).Evaluating Hyperspectral Imager for the Coastal Ocean (HICO) data for seagrass mapping in Indian River Lagoon, FL. GIScience & Remote Sensing, 51(2): 120-138. doi: 10.1080/15481603.2014.895577
(2014).Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission PerspectiveFrontiers in Earth Science 7, 100. doi: 10.3389/feart.2019.00100
(2019).Validation of atmospheric correction over the oceans. Journal of Geophysical Research, 102(D14), 17209. doi: 10.1029/96jd03345
(1997).A new view of coastal oceans from the Space Station Eos Transactions. AGU, 92(19), 161-162. doi: 10.1029/2011EO190001
(2011).Measurement of the Roughness of the Sea Surface from Photographs of the Sun's Glitter. Journal of the Optical Society of America, 44(11), 838. doi: 10.1364/josa.44.000838
(1954).
Climate modulates internal wave activity in the Northern South China Sea. Geophysical Research Letters, doi: 10.1002/2014GL062522
(2015).Space station image captures a red tide ciliate bloom at high spectral and spatial resolution. PNAS, 112(48): 14783-14787; doi: 10.1073/pnas.1512538112
(2015).
VIIRS on-orbit calibration for ocean color data processing. Earth Observing Systems XVII. doi: 10.1117/12.930483
(2012).A synthesis of VIIRS solar and lunar calibrations. Earth Observing Systems XVIII. doi: 10.1117/12.2024069
(2013).An overview of MODIS capabilities for ocean science observations. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1250-1265. doi: 10.1109/36.701076
(1998).
Identification and characterization of stable homogeneous oceanic zones: climatology and impact on in-flight calibration of space sensor over Rayleigh scattering. Ocean Optics XVI, Santa Fe, NM, 18-22. doi: 10.1364/AO.46.005435
(2002).SeaWiFS vicarious calibration: an alternative approach utilizing simultaneous in situ observations of oceanic and atmospheric optical properties. In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, and Data QC and Analysis. http://seabass.gsfc.nasa.gov/wiki_files/System_Description/files/SIMBIOS-AOT-2000.pdf#page=94
(2001).The continuity of ocean color measurements from SeaWiFS to MODIS. Proc. SPIE 5882, Earth Observing Systems X, 58820W. doi:10.1117/12.620069
(2005).Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. Applied optics, 46(22), 5068. doi: 10.1364/ao.46.005068
(2007).Moderate Resolution Imaging Spectroradiometer on Terra: limitations for ocean color applications, Journal of Applied Remote Sensing, 2(1), 023525. doi: 10.1117/1.2957964
(2008).Methods for assessing the quality and consistency of ocean color products. NASA Goddard Space Flight Center, Ocean Biology Processing Group http://oceancolo r.gsfc.nasa.gov/DOCS/methods/sensor_analysis_methods.html
(2009).The alternating decision tree learning algorithm. In proceedings of the sixteenth international conference on machine learning (ICML '99), Ivan Bratko and Saso Dzeroski (Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 124-133.
(1999).A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface. Journal of Geophysical Research, 94(C7), 9731. doi: 10.1029/jc094ic07p09731
(1989).Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. Journal of Geophysical Research, 101(C6), 14361-14371. doi: 10.1029/96jc00629
(1996).Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications. Oceanographic Literature Review, 2(44), 163. doi: 10.1029/96JC00629
(1997).
Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia. Remote Sensing of Environment, 147, 186-205. doi: 10.1016/j.rse.2014.03.010
(2014).Atmospheric correction algorithm for hyperspectral remote sensing of ocean Color from Space. Applied optics, 39(6), 887-896. doi: 10.1364/ao.39.000887
(2000).Multispectral decomposition for the removal of out-of-band effects of visible/infrared imaging radiometer suite visible and near-infrared bands. Applied Optics, 51, 4078-4086. doi: 10.1364/AO.51.004078
(2012).Vicarious calibrations of HICO data acquired from the International Space Station. Applied Optics, 51(14), 2559-2567. doi: 10.1364/AO.51.002559
(2012).Removal of thin cirrus scattering effects for remote sensing of ocean color from space. IEEE Geoscience and Remote Sensing Letters, 9, 972-976. doi: 10.1109/LGRS.2012.2187876
(2012).Improving the retrieval of water inherent optical properties in noisy hyperspectral data through statistical modeling. Optics Express, 21(18): 21306-21316. doi: 10.1364/OE.21.021306
(2013).Estimation of chlorophyll-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean - the Azov Sea case study. Environmental Research Letters, 6, 024023.doi: 10.1088/1748-9326/6/2/024023
(2011).A semianalytic radiance model of ocean color. Journal of Geophysical Research, 93(D9), 10909. doi: 10.1029/jd093id09p10909
(1988).Clear water radiances for atmospheric correction of coastal zone color scanner imagery. Applied Optics, 20(24), 4175. doi: 10.1364/ao.20.004175
(1981).Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied optics, 33(3), 443-452. doi: 10.1364/ao.33.000443
(1994).Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Applied optics, 33(33), 7754. doi: 10.1364/ao.33.007754
(1994).Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response. Applied optics, 34(36), 8363-8374. doi: 10.1364/ao.34.008363
(1995).Atmospheric correction of ocean color sensors: analysis of the effects of residual instrument polarization sensitivity. Applied optics, 36(27), 6938-6948. doi: 10.1364/ao.36.006938
(1997).In-Orbit Calibration Strategy for Ocean Color Sensors. Remote Sensing of Environment, 63(3), 265-278. doi: 10.1016/s0034-4257(97)00163-6
(1998).Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. Geophysical Research Letters 28(8), 1587-1590. doi: 10.1029/2000gl012025
(2001).Normalized water-leaving radiance: revisiting the influence of surface roughness. Applied optics, 44(2), 241-248. doi: 10.1364/ao.44.000241
(2005).Spectral dependence of the scattering coefficient in case 1 and case 2 waters. Applied optics, 38(12), 2377-2383. doi: 10.1364/AO.38.002377
(1999).The Astronomical Almanac for the Year 1984: Data for Astronomy, Space Sciences, Geodesy, Surveying, Navigation and Other Applications. U.S. Government Printing Office, 1983. ISBN: 0118869191, 9780118869195. https://books.google.com/books?id=Z7xLMAEACAAJ
(1983).High altitude measurements of radiance at high spectral and spatial resolution for SIMBIOS sensor calibration, validation, and intercomparisons. NASA Tech. Memo. 208645, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD. SIMBIOS Project 2000 Annual Report, 80. http://www.researchgate.net/profile/David_Siegel7/publication/4712656_Spectral_Data_Assimilation_for_Merging_Satellite_Ocean_Color_Imagery/links/0c96051c9b0b58a01a000000.pdf#page=80
(2001).Decadal changes in global ocean chlorophyll. Geophys. Res. Lett., 29(11), 1730. doi: 10.1029/2002GL014689
(2002).
A MODIS Sea Surface Temperature Composite for Regional Applications. IEEE Transactions on Geoscience and Remote Sensing, 45(9), 2919-2927. doi: 10.1109/tgrs.2007.898274
(2007).On sea surface properties and characteristics in the infrared. Thesis (Ph.D.) University of Miami, 2002.; Publication Number: AAI3056632; ISBN: 9780493717869; Source: Dissertation Abstracts International, Volume: 63-06, Section: B, page: 2767.; 111 p.
(2001).Profiling temperature in the sea surface skin layer using FTIR measurements. Gas Transfer at Water Surfaces. edited by M. A. Donelan, W. M. Drennan, E. S. Saltzmann and R. Wanninkhof. American Geophysical Union Monograph 127, 161-166. doi: 10.1029/GM127p0161
(2002)A study of global aerosol optical climatology with two-channel AVHRR remote sensing. Journal of Climate, 13(12), 2011-2027. doi: 10.1175/1520-0442(2000)013<2011:asogao>2.0.co;2
(2000).An overview of SeaWiFS and ocean color. NASA Tech. Memo. 104566, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD. SeaWiFS Project Technical Report Series
(1992).Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past. Applied Optics, 51(25), 6045-6062. doi: 10.1364/AO.51.006045
(2012).Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395
(2012).Improving satellite global chlorophyll a data products through algorithm refinement and data recovery. Journal of Geophysical Research: Oceans, 124(3), 1524-1543, doi: 10.1029/2019JC014941
(2019).
Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO) Remote Sensing of Environment 204, 60-75. doi: 10.1016/j.rse.2017.10.041
(2018).
Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry Frontiers in Marine Science 6, 251. doi: 10.3389/fmars.2019.00251
(2019).
Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor. International Journal of Remote Sensing, 35(9), 2927-2962. doi: 10.1080/01431161.2014.894663
(2014).Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. Journal of Geophysical Research. 106(C5):9179-9197. doi: 10.1029/1999JC000065
(2001).A decade of sea surface temperature from MODIS. Remote Sensing of Environment, 165, 27-41. doi: 10.1016/j.rse.2015.04.023
(2015).Classification of SST Quality Using a Combined Forest of Weak and Strong Classifiers. The 17th International GHRSST Science Team Meeting (GHRSST XVII) - Washington DC, USA - 6th to 10th June 2016. View/download poster
(2016).Cross-Calibration of ocean color bands from Moderate Resolution Imaging Spectroradiometer on Terra platform. Applied optics, 47: (36) 6796-6810. doi: 10.1364/AO.47.006796
(2008).
Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied optics, 41(27), 5755. doi: 10.1364/ao.41.005755
(2002).A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research, 110(C2). doi: 10.1029/2004jc002275
(2005).Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. Journal of Geophysical Research, 112(C3). http://dx.doi.org/10.1029/2006jc003802
(2007).A technique for removing second-order light effects from hyperspectral imaging data. IEEE Transactions on Geoscience and Remote Sensing, 50, 824-830. doi: 10.1109/TGRS.2011.2163161
(2012).AVHRR, MODIS, and VIIRS radiometric stability and consistency in SST bands. J. Geophys. Res. Oceans, 118(6), 3161-3171. doi: 10.1002/jgrc.20205
(2013).Hyperspectral Imager for the Coastal Ocean (HICO): instrument description and first images. Applied Optics, 50, 1501-1516. doi: 10.1364/AO.50.001501
(2011).
Optimization of a semianalytical ocean color model for global-scale applications. Appl. Opt., 41(15), 2705.http://dx.doi.org/10.1364/ao.41.002705
(2002).Radiometric calibration of SeaWiFS in the near infrared. Applied optics, 44(36), 7828-7844. doi: 10.1364/ao.44.007828
(2005).Science quality SeaWiFS data for global biosphere research. Sea Technology, 39, 10-16. https://oceancolor.gsfc.nasa.gov/data/reprocessing/r1998.1/seawifs/sea_tech/
(1998).Moderate-resolution imaging spectroradiometer ocean color polarization correction. Applied optics, 44(26), 5524-5535. doi: 10.1364/ao.44.005524
(2005).Derivation of the MODIS Aqua Point-Spread Function ocean color bands., Proc. SPIE 7081, Earth Observing Systems XIII, 70811F (August 28, 2008); doi: 10.1117/12.796980
(2008).Detector dependency of MODIS polarization sensitivity derived from on-orbit characterization., Proc. SPIE 7452, Earth Observing Systems XIV, 74520N (August 21, 2009); doi: 10.1117/12.825385
(2009).Adjustments to the MODIS Terra radiometric calibration and polarization sensitivity in the 2010 reprocessing. In SPIE Optical Engineering+ Applications (pp. 815308-815308). International Society for Optics and Photonics. doi: 10.1117/12.891787
(2011).Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data. Geoscience and Remote Sensing, IEEE Transactions on, 50(1), 310-319. doi: 10.1109/tgrs.2011.2160552
(2012).Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6534-6541. doi: 10.1109/tgrs.2013.2297233
(2014).Assessment of MERIS reflectance data as processed with SeaDAS over the European seas. Optics express, 19(25), 25657-25671. doi: 10.1364/oe.19.025657
(2011).Sea-surface temperature measurements from the moderate-resolution imaging spectroradiometer (MODIS) on aqua and terra. IEEE International IEEE International IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. doi: 10.1109/IGARSS.2004.1370173
(2004).The Validation of Sea Surface Temperature Retrievals from Spaceborne Infrared Radiometers. Oceanography from Space, revisited., V. Barale, J. F. R. Gower, and L. Alberotanza, Eds., Springer Science+Business Media B.V., 229-247. doi: 10.1007/978-90-481-8681-5_14
( 2010).A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements. Deep Sea Research Part II: Topical Studies in Oceanography 77 (2012): 44-51. doi: 10.1016/j.dsr2.2012.04.003
(2012).Sea-surface temperature from Suomi-NPP VIIRS: Algorithm development and uncertainty estimation. In Proceedings of SPIE - The International Society for Optical Engineering. (Vol. 9111). [91110C] SPIE. DOI: 10.1117/12.2053184
(2014).Performance evaluation of normalized difference chlorophyll index in northern Gulf of Mexico estuaries using the Hyperspectral Imager for the Coastal Ocean. GIScience and Remote Sensing, 51(2), 175-198. doi: 10.1080/15481603.2014.895581
(2014).Spectral reflectance of whitecaps: Their contribution to water?leaving radiance. Journal of Geophysical Research: Oceans (1978-2012), 105(C3), 6493-6499. doi: 10.1029/1999jc900334
(2000).Bio-optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research: Oceans, 106(C4), 7163-7180. doi: 10.1029/2000jc000319
(2001).Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function. Applied optics, 41(30), 6289-6306. doi: 10.1364/ao.41.006289
(2002).Optical properties of the “clearest” natural waters. Limnology and oceanography, 52(1), 217-229. doi: 10.4319/lo.2007.52.1.0217
(2007).Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sensing of Environment, 111(1), 69-88. doi: 10.1016/j.rse.2007.03.012
(2007).HICO-based NIR-red algorithms for estimating chlorophyll a concentration in productive coastal waters. IEEE Geoscience and Remote Sensing Letters, 11(6): 1111-1115. doi: 109/LGRS.2013.2287458
(2013).Expected improvements in the quantitative remote sensing of optically complex waters with the use of an optically fast hyperspectral spectrometer - A modeling study. Sensors, 15(3): 6152-6173; doi: 10.3390/s150306152
(2015).Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4: Special topics in ocean optics protocols and appendices. NASA Tech. Memo. 2004-21621, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD. https://oceancolor.gsfc.nasa.gov/DOCS/Protocols_Ver4_VolVI.pdf
(2003).Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, volume iii: Radiometric measurements and data analysis protocols. NASA Tech. Memo. 2003-21621, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD. https://oceancolor.gsfc.nasa.gov/DOCS/Protocols_Ver4_VolIII.pdf
(2003).
The solar spectral irradiance and its action in the atmospheric photodissociation processes. Planetary and Space Science, 29(9), 951-974. doi: 10.1016/0032-0633(81)90056-8
(1981).
Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103( C11), 24937– 24953, doi:10.1029/98JC02160
(1998),Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. NASA Technical Memo. SeaWiFS postlaunch calibration and validation analyses, Part 3. 2000-206892 11, 9-24. Ocean_color_chlorophyll_a_algorithms_for_SeaWiFS_OC2_and_OC4_Version_4
(2000).
Algorithm updates for the fourth SeaWiFS data reprocessing. National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030102166.pdf
(2003).Absorption spectrum (380-700 nm) of pure water II Integrating cavity measurements. Applied optics, 36(33), 8710. doi: 10.1364/ao.36.008710
(1997).
Application of the Hyperspectral Imager for the Coastal Ocean to phytoplankton ecology studies in Monterey Bay, CA, USA. Remote Sensing, 6(2), 1007-1025. doi: 10.3390/rs6021007
(2014).Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Applied optics, 39(6), 897-912. doi: 10.1364/AO.39.000897
(2000).
Satellites for long-term monitoring of inland U.S. lakes: The MERIS time series and application for chlorophyll-a Remote Sensing of Environment, Volume 266, 2021, 112685. doi: 10.1016/j.rse.2021.112685
(2021).Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations. Journal of Quantitative Spectroscopy and Radiative Transfer 220, 39-51. doi:10.1016/j.jqsrt.2018.08.030
(2018).Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties., AFGL-TR-79-0214. Air Force Geophysics Lab, HANSCOM AFB MA. http://www.dtic.mil/dtic/tr/fulltext/u2/a085951.pdf
(1979).Optical properties of the clearest natural waters (200-800 nm). Applied optics, 20(2), 177. doi: 10.1364/ao.20.000177
(1981).Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 5(1), 171-201. doi:10.5194/bg-5-171-2008
(2008).A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from seawifs in coastal waters. NASA Tech. Memo. 206892, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD. https://oceancolor.gsfc.nasa.gov/SeaWiFS/TECH_REPORTS/PLVol22.pdf
(2003).Hyperspectral observation of internal waves. International Journal of Geology, Earth, and Environmental Sciencesi, Vol. 2(1) January-April, 79-82.
(2012).Spatial distribution patterns of chlorophyll-a and suspended matter in the Yangtze Estuary and the Hangzhou Bay as observed with the Hyperspectral Imager for the Coastal Ocean (HICO) International Journal of Geology, Earth & Environmental Sciences, 3(2), 141-152. doi: 10.1109/LGRS.2013.2287458
(2013).
The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Solar Physics 214: 1. doi:10.1023/A:1024048429145
(2003).The shape of ocean color. Topology and Dynamics of Chaos, R. Gilmore and C. Letellier eds., World Scientific Series on Nonlinear Science Series A, 84, 251-268. doi: 10.1142/9789814434867_0011
, (2013).Assessment of NPP VIIRS ocean color data products: hope and risk. In SPIE optical engineering+ applications, 81530M-81530. International society for optics and photonics. doi: 10.1117/12.893945
(2011).Suomi NPP VIIRS ocean color data product early mission assessment. Proc. SPIE 8510, Earth Observing Systems XVII, 85101H. doi:10.1117/12.931113
(2012).
N/A
"Determining the optimal spectral sampling frequency and uncertainty thresholds for hyperspectral remote sensing of ocean color", Optical Express 25(16), A785-A797. doi: 10.1364/OE.25.00A785
(2017)
The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellitesi., Journal of Geophysical Research, 103(C12), 27999–28012, doi:10.1029/98JC02370
(1998).Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance. Applied optics, 38(3), 451-455. doi: 10.1364/ao.38.000451
(1999).Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean. Applied optics, 40(3), 343-348. doi: 10.1364/ao.40.000343
(2001).Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Applied optics, 40(27), 4790-4798. doi: 10.1364/ao.40.004790
(2001).The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness. International Journal of Remote Sensing, 23(13), 2693-2702. doi: 10.1080/01431160110115591
(2002).Calibration of ocean color scanners: how much error is acceptable in the near infrared? Remote Sensing of Environment, 82(2-3), 497-504. doi: 10.1016/s0034-4257(02)00072-x
(2002).A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure. International Journal of Remote Sensing, 26(24), 5651-5663. doi: 10.1080/01431160500168793
(2005).Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance. Applied optics, 45(17), 4122-4128. doi: 10.1364/ao.45.004122
(2006-06).Unique data repository facilitates ocean color satellite validation. EOS, Transactions American Geophysical Union, 84(38), 377-387. doi: 10.1029/2003eo380001
(2003).On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model. Applied optics, 46(23), 5649-5666. doi: 10.1364/ao.46.005649
(2007).Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment. Proc. SPIE 6680, Coastal ocean remote sensing, 66800G. doi: 10.1117/12.732489
(2007).Regional and seasonal variability of chlorophyll-a in chesapeake bay as observed by SeaWiFS and MODIS-Aqua. Remote Sensing of Enviornment, 113(6), 1319-1330. doi: 10.1016/j.rse.2009.02.012
(2009).Generalized ocean color inversion model for retrieving marine inherent optical properties. Applied optics, 52(10), 2019. doi: 10.1364/ao.52.002019
(2013).
N/A
N/A
Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site. Geophysical Research Letters 33(6), L06617. doi: 10.1029/2006gl025778
(2006).