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Ocean reflectance inversion models (ORMs) provide a mechanism for inverting the color of the water
observed by a satellite into marine inherent optical properties (IOPs), which can then be used to study
phytoplankton community structure. Most ORMs effectively separate the total signal of the collective
phytoplankton community from other water column constituents; however, few have been shown to
effectively identify individual contributions by multiple phytoplankton groups over a large range of envi-
ronmental conditions. We evaluated the ability of an ORM to discriminate between Noctiluca miliaris
and diatoms under conditions typical of the northern Arabian Sea. We: (1) synthesized profiles of IOPs
that represent bio-optical conditions for the Arabian Sea; (2) generated remote-sensing reflectances from
these profiles using Hydrolight; and (3) applied the ORM to the synthesized reflectances to estimate the
relative concentrations of diatoms and N. miliaris. By comparing the estimates from the inversion
model with those from synthesized vertical profiles, we identified those conditions under which the
ORM performs both well and poorly. Even under perfectly controlled conditions, the absolute accuracy
of ORM retrievals degraded when further deconstructing the derived total phytoplankton signal into
subcomponents. Although the absolute magnitudes maintained biases, the ORM successfully detected
whether or not Noctiluca miliaris appeared in the simulated water column. This quantitatively calls for
caution when interpreting the absolute magnitudes of the retrievals, but qualitatively suggests that the
ORM provides a robust mechanism for identifying the presence or absence of species. © 2014 Optical
Society of America
OCIS codes: (010.4450) Oceanic optics; (280.4991) Passive remote sensing.
http://dx.doi.org/10.1364/AO.53.004833

1. Introduction

Changes in marine phytoplankton species composi-
tions can be triggered by changes in the Earth’s cli-
mate [1–3]. Long-term changes in phytoplankton
community composition contribute to changes in
food webs and air–land–sea carbon cycles [4]. The

northern Arabian Sea, for example, appears to
be undergoing a shift in phytoplankton species
composition from diatoms to Noctiluca miliaris dur-
ing the annual winter (November to March) North-
east Monsoon (NEM) [5–7]. Blooms of N. miliaris
are disrupting the traditional diatom-dominated
food chain during the NEM and altering the magni-
tude of carbon export [8]. Ship- and aircraft-based
sampling alone cannot produce sufficient data re-
cords to study such phytoplankton diversity shifts
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on large temporal and spatial scales. Following, the
oceanographic community has invested in the devel-
opment of methods to identify and discriminate
between members of the phytoplankton community
using remotely sensed data records [9]. Satellite
ocean color instruments provide consistent and
high-volume data records on scales that far exceed
current ship and aircraft sampling strategies, with
time-series of sufficient length to allow retrospective
analysis of oceanographic trends. The imagery cap-
tured by the NASA Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS; 1997–2010) and the Moderate
Resolution Imaging Spectroradiometer onboard
Aqua (MODISA; 2002–present), for example, provide
viable data records for observing almost two decades
of changes in the biogeochemistry of both global and
regional marine ecosystems [10–13]. The community
considers ocean color satellite estimates of phyto-
plankton community composition to be sufficiently
critical for advancing our understanding of biogeo-
chemistry and carbon cycle science that all forthcom-
ing ocean color satellite programs are now required
to have the capability to discriminate between phyto-
plankton groups [14,15].

A variety of approaches exist for identifying phyto-
plankton communities from satellite ocean color data
records. Briefly, satellite ocean color instruments
measure the spectral radiance exiting the top of
the atmosphere (Lt�λ�; μW cm−2 nm−1 sr−1) at discrete
visible and infrared wavelengths. Atmospheric cor-
rection algorithms are applied to Lt�λ� to remove
the contribution of the atmosphere from the total sig-
nal and produce estimates of remote-sensing reflec-
tances Rrs�λ�; sr−1), the light exiting the water mass
was normalized to the hypothetical condition of an
overhead Sun and no atmosphere [16,17]. Bio-optical
algorithms are applied to the Rrs�λ� to produce esti-
mates of additional marine geophysical properties,
such as the near-surface concentration of the phyto-
plankton pigment chlorophyll-a (Cϕ; mg m−3) [18,19]
and inherent optical properties (IOPs: the spectral
absorption and scattering characteristics of ocean
water and its dissolved and particulate constituents)
[20,21]. Several methods for identifying phytoplank-
ton communities do so using empirically derived
thresholds on the magnitudes of the derived Cϕ or
IOPs [22–27], whereas others interpret the retrieved
radiometric spectral shapes [28–37]. In general, the
former, abundance-based methods exploit observed
relationships between the trophic status of the
environment and the type of phytoplankton expected
to be present, whereas the latter, spectral methods
exploit differences in the optical signatures of spe-
cific size classes or functional groups to distinguish
between phytoplankton types [9]. Corresponding
studies related to changing ecosystems or the ap-
pearance of new species most often employ spectral
methods, as abundance methods cannot capture the
desired signals when the emerging environmental
relationships do not appear in their in situ training
data sets.

Ocean reflectance inversion models (ORMs) pro-
vide a common spectral method for inverting the
“color” of the water observed by a satellite [e.g.,
Rrs�λ�] intomarine IOPs througha combination of em-
piricism and radiative transfer theory [20,21]. Gener-
ally speaking, ORMs attribute variations realized in
the spectral shape ofRrs�λ� to varyingmarine popula-
tions of phytoplankton, nonalgal particles (NAP), and
colored dissolved organic material (CDOM), all of
which maintain unique optical signatures. They
operate by assuming spectral shape functions of the
constituent absorption and scattering components
and retrieving the magnitudes of each constituent re-
quired to match the spectral distribution of Rrs�λ�.
Therefore, unlike abundance methods, ORMs can,
in principle, discriminate between phytoplankton
groups with common abundances, provided the
groups present have contrasting optical signatures
within the spectral bands detected. This ability to fur-
ther deconvolve aϕ�λ� into contributions by individual
phytoplankton groups, however, remains inad-
equately demonstrated for a large range of environ-
mental conditions [35,37]. When ORMs include only
a single spectrum for a phytoplankton group, they re-
main confounded bynatural variations in the spectral
characteristics of that group due to growth stage, nu-
trient availability, and ambient light history. Further-
more, their solution can be statistically ambiguous
[i.e., several combinations of IOPs can produce simi-
lar Rrs�λ�] and dependent upon the wavelength suite
(number and position) used in the inversion [38,39].

Here, we evaluate the ability of a common ORM to
discriminate between two phytoplankton groups re-
siding under varied biophysical conditions. Our goal
was twofold: evaluate the ability of an ORM to
quantify blooms with variable depths, thicknesses,
and ages; and verify the spectral requirements for
success using an ORM. For this case study, we
selected a well-vetted ORM algorithmic form that
we parameterized specifically to identify N. miliaris
in a mixed phytoplankton community, using satellite
ocean color data records collected in the Arabian Sea
[40]. Briefly, we: (1) synthesized a series of vertical
profiles of IOPs that represent a wide variety of
bio-optical conditions for the northern Arabian
Sea; (2) generated Rrs�λ� from these profiles using
Hydrolight-Ecolight 5 (HE5) [41]; (3) applied the
ORM to the synthesized Rrs�λ� to estimate the rela-
tive presence of diatoms and N. miliaris for each ex-
ample; and (4) repeated the third step using Rrs�λ�
with reduced spectral resolution. Comparing the es-
timates from the inversionmodel with those from the
synthesized vertical profiles provided a mechanism
for identifying those bio-optical conditions under
which the ORM performed both well and poorly.
While we focus on two specific phytoplankton popu-
lations, our ORM otherwise maintains the common
form of many established approaches [20,21] and,
thus, we expect our results to provide a case study
that transfers well to other algorithms and phyto-
plankton populations.
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2. Methods

A. Study Site and In Situ Data

Field experiments crafted to study the transition
from N. miliaris to diatoms in the northern Arabian
Sea were conducted during the 2011 NEM onboard
the Indian Fishery Oceanographic Research Vessel
Sagar Sampada, which traveled offshore following
a northwest transect from Goa, India. Sampling
dates ranged from March 7th–9th, 2011 and encom-
passed diatom-dominant, N. miliaris-dominant, and
mixed population stations. We acquired measure-
ments of Rrs�λ� and spectral absorption coefficients
during this field campaign, using data collection
and processing methods that appear in Roesler et al.
[40] and Thibodeau et al. [7], respectively. With re-
gard to the latter, we measured the spectrophotomet-
ric absorption of particles from discrete water
samples using the quantitative filter technique, as
modified by Mitchell [42] and Roesler [43]. We deter-
mined phytoplankton and non-algal absorption frac-
tions by extraction [44] and identified and quantified
phytoplankton species microscopically [5]. We as-
signed taxonomic dominance to each in situ sample
using the microscopic species enumerations. We also
collected discrete water samples via Niskin bottles
for analysis of Cϕ and other pigments by the NASA
high performance liquid chromatography facility at
Goddard Space Flight Center. As in Thibodeau et al.
[7], we used these measurements to derive average
Cϕ-specific absorption spectra for N. miliaris (a�

ϕN�λ�;
m2 mg−1) and diatoms (a�

ϕD�λ�; m2 mg−1) (Fig. 1).
The species N. miliaris appearing in the Arabian

Sea is a mixotrophic dinoflagellate with green
prasinoxanthin-containing symbionts (Pedinomonas
noctilucae), which is physiologically different than
the pink, bioluminescent variety more commonly
found in temperate coastal waters [45] and optically
different than most other resident diatom species,
including mixtures of Rhizosolenia spp., Thallassio-
thrix spp., Skeletonema spp., and Chaetoceros spp.

We acknowledge that N. miliaris and diatoms alone
cannot universally represent the phytoplankton
community of the northern Arabian Sea at all times
and that single a�

ϕ�λ� cannot universally represent a
phytoplankton group at all times. However, the con-
trasting optical signatures ofN. miliaris and diatoms
and their known colocation under many circumstan-
ces provided an ideal “real world” scenario for our
sensitivity analyses.

B. Ocean Reflectance Inversion Model

Our ORM adopts the generalized IOP (GIOP) form
described in Werdell et al. [21]. Briefly, ocean color
satellite instruments provide estimates of Rrs�λ�,
which we convert to their subsurface values using
the method presented in Lee et al. [46]:

rrs�λ; 0−� �
Rrs�λ�

0.52� 1.7Rrs�λ�
: (1)

Subsurface remote-sensing reflectances relate to
marine IOPs, following Gordon et al. [47]:

rrs�λ; 0−� � 0.0949u�λ� � 0.0794u�λ�2

u�λ� � bb�λ�
a�λ� � bb�λ�

; (2)

where bb�λ� is the total backscattering coefficient
(m−1) and a�λ� is the total absorption coefficient
(m−1). Total absorption can be expanded as the
sum of all absorbing components. Further, each com-
ponent can be expressed as the product of its mass-
specific absorption spectrum (eigenvector: a�) and its
magnitude or concentration (eigenvalue: M):

a�λ� � aw�λ� �Mϕa�
ϕ�λ� �Mdga�

dg�λ�; (3)

where the subscripts w, ϕ, and dg indicate contribu-
tions by water, phytoplankton, and NAP (d etritus) +
CDOM (g elbstoff). In the remote sensing paradigm,
absorption by NAP (ad�λ�; m−1) and absorption by
CDOM (ag�λ�; m−1) cannot currently be effectively
separated, as they maintain similar spectral shapes.
We expressed a�

dg�λ� as exp�−Sdgλ�, where Sdg de-
scribes the rate of exponential decay and typically
varies between 0.01 and 0.02 nm−1 [48]. We further
deconstructed a�

ϕ�λ� into contributions by diatoms
and N. miliaris (Fig. 1):

Mϕa�
ϕ�λ� � MϕDa�

ϕD�λ� �MϕNa�
ϕN�λ�; (4)

where the subscripts D and N indicate diatoms and
N. miliaris. We adopted the a�

ϕD�λ� and a�
ϕD�λ� de-

scribed in Section 2.A. As these are Cϕ-specific
absorption coefficients, the eigenvalues MϕD and
MϕN represent chlorophyll for diatoms (CϕD) and N.
miliaris (CϕN).

Similar to absorption, total backscattering can be
expanded to:

Fig. 1. Absorption spectra for N. miliaris and diatoms, normal-
ized to 440 nm [7]. Thin blue lines show spectra from in situ sta-
tions dominated by diatoms, with the thick blue line indicating the
mean spectrum. Thin orange lines show spectra from in situ sta-
tions dominated by N. miliaris, with the thick red line indicating
the mean spectrum. The average a�

ϕD�440� and a�
ϕN�440� were

0.052 (�0.022) and 0.066 (�0.015) m2 mg−1, respectively. Vertical
solid lines indicate center MODISA wavelengths. Vertical dotted
lines show the additional wavelengths considered in this study.
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bb�λ� � bbw�λ� �Mbpb�bp�λ�; (5)

where the subscripts bw and bp indicate
contributions by water and particles �� NAP�
phytoplankton�, respectively. We expressed b�bp�λ�
as λη, respectively, where η defines the steepness of
the power law and typically varies between −2 and
0 in natural waters [49]. Both aw�λ� and bbw�λ�
are known, as are their temperature and salinity
dependencies [50–52].

Four unknowns remain in Eqs. (1)–(5) after we as-
sign the eigenvectors:Mdg,Mbp,MϕD (hereafter CϕD),
and MϕN (hereafter CϕN). Using Rrs�λ� as input, we
estimate these eigenvalues via nonlinear least
squares (Levenberg–Marquardt) inversion of Eq. (2)
[21]. We retained only those solutions with viable
estimates of Mdg, Mbp, CϕD, and CϕN (e.g.,
−0.05aw�λ� ≤ adg�λ� ≤ 5 m−1) that resulted in recon-
structed Rrs�λ�, which differed from the input Rrs�λ�
by less than 33% for all wavelengths between 400
and 600 nm. We reconstructed Rrs�λ� using the re-
trieved eigenvalues as input into Eqs. (1)–(5) and de-
fined failure as nonconvergence in the inversion.
Werdell et al. [21] outlined the similarities in form
and accuracy shared by this ORM configuration
and other commonapproaches (e.g., [19,20,31,37,46]).

C. Synthesis of IOP Profiles

We synthesized a series of vertical profiles of spectral
IOPs, representing a wide variety of bio-optical con-
ditions for the northern Arabian Sea, for use as input
into the “IOP Data” model of HE5. Specifically, we
constructed vertical profiles of absorption and at-
tenuation by particles plus CDOM (apg�λ� and
cpg�λ�, respectively; m−1):

apg�λ; z� � adg�λ; z� � aϕD�λ� � aϕN�λ�apg�λ; z�
� adg�λ; z� � CϕD�z�a�

ϕD�λ� � CϕN�z�a�
ϕN�λ�;

(6)

cpg�λ; z� � apg�λ; z� � bp�λ; z�; (7)

where bp�λ; z� is total scattering by particles (m−1):

bp�λ; z� � bd�λ� � bϕD�λ� � bϕN�λ�
bp�λ; z� � Md�z�b�d�λ� � CϕD�z�b�ϕD�λ� � CϕN�z�b�ϕN�λ�:

(8)

We expressedMd�z� as bd�555; z� and the shape of the
eigenvectors as power laws. Note that b�ϕD�555� and
b�ϕN�555� representCϕ-specific scattering coefficients:

bp�λ;z��bd�555;z�
�

λ

555

�
ηd �CϕD�z�b�ϕD�555�

�
λ

555

�
ηϕD

�CϕN�z�b�ϕN�555�
�

λ

555

�
ηϕN

: (9)

Unlike our ORM, we deconvolved adg(λ; z) into its
two components:

adg�λ; z� � Md�z�a�
d�λ� �Mg�z�a�

g�λ�
adg�λ; z� � ad�443; z� exp�−Sd�λ − 443��

� ag�443; z� exp�−Sg�λ − 443��: (10)

Construction of apg�λ; z� and cpg�λ; z� using
Eqs. (6)–(10) required defining 14 eigenvectors and
eigenvalues:CϕD�z�,CϕN�z�, a�

ϕD�λ�, a�
ϕN�λ�, bd�555; z�,

b�ϕD�555�, b�ϕN�555�, ηd, ηϕD, ηϕN , ad�443; z�, ag�443; z�,
Sg, and Sd (Table 1). We only assigned depth depend-
ence to a single term CϕN�z�, which we constructed as
a Gaussian expression defined by a null background
signal, a full width at half-maximum (NW), and a
maximum value (Nmax) at an assigned depth (NZ).
CϕN�z� alone controlled the vertical structure of
our simulated profiles (Fig. 2).

We carefully selected appropriate ranges of simu-
lation parameters, based on extensive literature re-
views and local knowledge from field sampling
(Table 1). In addition to apg�λ; z� and cpg�λ; z�, running
the HE5 “IOP Data” model also required generation
of vertical profiles of ag�λ; z� [see Eq. (10)] and Cϕ�z�
�� CϕN�z� � CϕD�z��, plus spectra of a�

ϕ�λ�. For
the latter, we generated a�

ϕ�λ� for each simulation
following:

a�
ϕ�λ� �

CϕN

CϕN � CϕD
a�
ϕN�λ� �

CϕD

CϕN � CϕD
a�
ϕD�λ�: (11)

Using all combinations of the values presented in
Table 1 resulted in 1,920 simulated stations. We gen-
erated vertical profiles and spectra at 5 nm intervals
from 400 to 750 nm to loosely mimic the output of a
WET Labs, Inc. AC-S (a hyperspectral absorption
and attenuation meter), which HE5 readily accepts
as input into its “IOP Data”model. Figure 2 provides
an example suite of profiles for one simulated
station.

D. Modeling and Data Analysis

Using our simulated data as input into HE5, we gen-
erated simulated remote-sensing reflectances (Fig. 3)
and depth profiles of spectral upwelling radiance and
downwelling irradiance. We configured HE5 as
follows: spectral output from 400 to 700 nm at 5 nm
intervals; vertical output from 0 to 30 m at 3 m
intervals; an infinitely deep bottom; cloud cover of
25%; wind speed of 5 ms−1; solar geometry specific
to year day 45, latitude 20°N, and longitude 60°E
at local noon; the RADTRAN sky model; all inelastic
scattering options enabled; and a spectrally constant
and depth-independent bb∕b of 0.01 [53]. Although
some uncertainty accompanied our assignment of
the latter, we repeated the analysis with other values
and found our overall results to be unchanged.
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We applied the ORM to each simulated Rrs�λ� us-
ing two different suites of input wavelengths with
relevance to current and planned satellite ocean
color science. First, we used only six visible MODISA
wavelengths to represent the present state of satel-
lite ocean color (412, 443, 488, 531, 547, and 667 nm).
Second, we considered a suite of 16 visible wave-
lengths in consideration for future ocean color satel-
lite instruments (the six MODISA wavelengths plus
400, 425, 460, 475, 510, 583, 617, 640, 655, and
665 nm) [15,54]. Hereafter, we refer to this expanded
suite of wavelengths as “all wavelengths” in figures
and tables. While we acknowledge the value in evalu-
ating alternate combinations of wavelengths to study
phytoplankton species composition [55], our analysis
of these two suites also provides practical results for

existing and forthcoming satellite instruments.
These two Rrs�λ� suites serve well to explore what
can be accomplished today (e.g., using MODISA)
and what we might be able to accomplish in the near
future {e.g., via the upcoming NASA Pre-Aerosols,
Clouds, and Ocean Ecosystems (PACE) mission [15]}.

At this stage, our synthesized Cϕ�z� and IOP�z�
profiles provide the “ground truth” for comparison
with the modeled values from the ORM. Approxi-
mately 90% of what a satellite ocean color “sees” in-
cludes weighted contributions from all water column
constituents shallower than the first optical depth
(z90; m−1); that is, the e-folding depth for diffuse at-
tenuation coefficients for downwelling irradiance
(Kd�λ�; m−1) [56]. To properly account for the subsur-
face CϕN�z� maxima, we optically weighted the Cϕ�z�

Fig. 2. Example simulated profiles forCϕ, absorption coefficients at 443 nm, and scattering coefficients at 443 nm. The simulation param-
eters for these profiles are: CϕD � 1 mgm−3, NZ � 5 m, NW � 5 m, Nmax � 6 mgm−3, ad�443� � 0.02 m−1, ag�443� � 0.05 m−1, and
bd�555� � 0.2 m−1 (Table 1). Panel (A) shows Cϕ and CϕD and indicates the three parameters that describe the Gaussian-shaped CϕN

(NZ, NW , and Nmax). Panel (B) shows the corresponding aϕN�443�, aϕD�443�, ad�443�, and ag�443�. Panel (C) shows the corresponding
bϕN�443�, bϕD�443�, and bd�443�.

Table 1. Values Used to Simulate Vertical IOP Profiles for Input in HE5

Variable Values Units References

CϕD 0.02, 0.1, 0.5, 1 mgm−3 Gomes et al. [6], Thibodeau et al. [7]
Nmax 0, 0.5, 1, 3, 6 mgm−3 Gomes et al. [6,8], Thibodeau et al. [7]
NZ 0, 5, 10, 15 m Gomes et al. [6,8], Thibodeau et al. [7]
NW 1, 2, 5 m Gomes et al. [6,8], Thibodeau et al. [7]
a�
ϕD�λ� Figure 1 m2 mg−1 This study (Fig. 1)

a�
ϕN�λ� Figure 1 m2 mg−1 This study (Fig. 1)

bd�555� 0.1, 0.2 m−1 Roesler et al. [40]
b�ϕD�555� 0.15 m2 mg−1 Morel [70], Parab et al. [5], Roesler et al. [40]
b�ϕN�555� 0.15 m2 mg−1 Roesler et al. [40]
ηd −1 Unitless Stramski et al. [49]
ηϕD 0 Unitless Stramski and Mobley [71]
ηϕN 0 Unitless Roesler et al. [40]
ad�443� 0.002, 0.02 m−1 Roesler et al. [40]
ag�443� 0.005, 0.05 m−1 Roesler et al. [40]
Sd 0.011 nm−1 Roesler et al. [40,48]
Sg 0.018 nm−1 Roesler et al. [40,48]
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and IOP�z�s using the HE5-generated radiance and
irradiance profiles, following the method of Zaneveld
et al. [57], which produced the corresponding pseudo-
depth-integrated values for these variables detected
by the satellite instrument. We hereafter imply that
values are optically weighted, unless depth depend-
ence is specifically indicated [e.g., by “(z)”]. As will be
elaborated upon later, this weighting process high-
lights an inherent ambiguity within the ocean color
paradigm; that is, identical Cϕ can be produced by
larger, deeper blooms and smaller, shallower blooms,
simply because of their relative vertical location in
the water column.

3. Results

A. Synthesized R rs�λ�
The synthesizedRrs�λ� reasonably reproduced the dy-
namic range of in situ values acquired in the Arabian
Sea in March, 2011 (Fig. 3). Unusual Rrs�λ� can exist
in any suite of synthesized values when input param-
eters combine in ways that do not occur naturally. We
identified unnatural simulations for our study area as
those with single scattering albedos at 443 nm less
than 0.7 [occurring for stations with combinations
of the lowest Cϕ and highest adg�λ�] or Rrs (490)
greater than 0.008 sr−1 [occurring for stations with
combinations of the lowest Cϕ and lowest adg�λ�].
We considered simulations with low single scattering
albedos to be overly atypical, as previous radiative
transfer and in situ studies indicated it exceeds 0.8
in most natural waters [58,59]. Similarly, we consid-
ered simulations with Rrs�490� > 0.008 sr−1 to be
overly unusual, as this threshold exceeds our in situ
measurements by >40% and an extreme value for
open oceanmodels by>10% [60]. Elimination of these
unnatural simulations left 1437 stations for our
analyses. As these remaining synthesized values fall
within the envelope of spectra measured in the field,
we propose that they adequately represent a natural
range of environmental conditions for the northern
Arabian Sea, at least for the purposes of this theoreti-
cal analysis.

B. Retrieval of Total IOPs

Retrievals of bbp�λ�, apg�λ�, and aϕ�λ� compared
favorably with the ground-truth-synthesized values
(Fig. 4, Table 2). It is clear by difference

[apg�443� − aϕ�443�] that retrievals of adg�443� also
compared favorably. Using all available wavelengths
yielded better results than only considering MOD-
ISA wavelengths. When using all wavelengths in
the inversion, the comparisons maintained coeffi-
cients of determination (r2), least squares regression
slopes, and median ORM-to-synthesized ratios that
ranged from 0.77 to 0.97, 0.65 to 0.95, and 0.85 to
1.21 respectively, indicating good performance over
the full dynamic ranges of retrievals. The mean r2,
regression slopes, and ratios were 0.85, 0.83, and
1.07, respectively. The results changed somewhat

Fig. 3. Rrs�λ� collected in situ (thick black lines) and synthesized using HE5 (colored thin lines). Panel (A) shows all synthesized and in
situ Rrs�λ�. Panel (B) shows only synthesized Rrs�λ� with optically weighted Cϕ ranging from 0.95 to 1.05 mgm−3. Colors are only used to
visually distinguish between spectra.

Fig. 4. Comparison of ground-truth (synthesized) and ORM-
derived bbp�443� (A) and (B), apg�443� (C) and (D), and aϕ�443�
(E) and (F) using all available wavelengths in the inversion (left
column) and only MODISA visible wavelengths in the inversion
(right column). Colors show the numerical density of the retrievals,
with red to purple indicating high to low volumes of sample sizes.
We present comparative statistics in Table 2.
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when using only MODISA wavelengths, with r2,
regression slopes, and median ratios ranging from
0.67 to 0.94, 0.74 to 1.02, and 0.88 to 1.22, respec-
tively. The corresponding mean r2, regression slopes,
and ratios degraded slightly to 0.82, 0.84, and 1.09.
The most notable statistical difference between the
two wavelength suites was an increase in root mean
square error (RMSE) of 69%, 45%, and 35% for bbp�λ�,
apg�λ�, and aϕ�λ�, respectively, when using only
MODISA wavelengths (Table 2).

Our results suggest that ORM performance in-
creases with finer Rrs�λ� spectral resolution, most no-
tably with regard to retrieval variability (via RMSE).
However, the remaining statistics (r2, regression
slopes, and ratios) suggest that data records from
multispectral satellite instruments, such as MOD-
ISA, provide reliable ORM-derived IOPs on average
for a significant dynamic range of water types. In
general, these validation statistics fall well within
the range of those presented in previous ORM stud-
ies [20,21]. To verify this, we re-ran our analyses
using all available wavelengths as input into the
quasi-analytical algorithm (QAA) of Lee [46]. The
r2, regression slopes, ratios, and RMSEs for QAA
were: 0.93, 1.22, 1.18, and 0.0051 for bbp�443�; 0.95,
1.23, 1.09, and 0.01617 for apg�443�; and, 0.93, 0.83,
0.97, and 0.01220 for aϕ�443�. More often than not,
the performance of our ORM matched or exceeded
that of QAA, which confirms to a first-order that
our ORM yields results comparable with those of
alternate configurations [21] (Table 2).

C. Optically Weighted Cϕ

The ORM demonstrated dependence on the depth of
the subsurface maxima in its ability to estimate

absolute magnitudes of N. miliaris. Before proceed-
ing with our interpretation of this dependency, we
feel it worthwhile to remind the reader how vertical
structure in a water column constituent shapes its
optically weighted value and the corresponding
Rrs�λ� [38,39]. Multiple variants of CϕN�z� yielded
common Cϕ, the optically integrated values mea-
sured by an ocean color satellite instrument. Figure 5
presents Cϕ as a function of bloom depth (NZ) and
magnitude (Nmax) for a subset of our synthesized sta-
tions with constant bloom thickness (NW), CϕD,
ad�443�, ag�443�, and bd�555�. The deepest variants
of Nmax (3 and 6 mg m−3), for example, produced Cϕ
that matched the shallower variants ofNmax (0.5 and
1 mgm−3) (Table 3). Generally speaking, Cϕ for N.
miliaris blooms of all magnitudes converged to the
background diatom signal as NZ increased. The
weighted Cϕ increasingly underestimated Nmax as
the subsurface maximum increased in magnitude
and deepened. For the smallest Nmax, Cϕ depended
most significantly on the background CϕD and
showed very little dependence on the depth and
thickness of the subsurface N. miliaris maxima
(Table 3). Ultimately, the magnitude of the peak sub-
surface population exceeded its remote-sensing
value (e.g., Nmax > Cϕ) for most examples.

Changing the vertical position of a subsurface
bloom of fixed size and thickness yielded different
Cϕ. Consider, for example, the profiles with Nmax �
6 mgm−3 in Figure 5(A) (red circles). The correspond-
ing optically weighted Cϕ dropped from 5.58 to
0.75 mgm−3 as this synthesized bloom progressed
from the surface to a depth of 15 m (Table 3). Given
that standard ocean color algorithms are tuned to op-
tically weighted constituent stocks [18,61], it stands

Table 2. Ordinary Least Squares Regression Statistics for Ground-Truth-Synthesized Versus ORM-Derived IOPsa

All λ MODISA λ

r2 Slope (SE) Ratio RMSE r2 Slope (SE) Ratio RMSE

bbp 412 0.92 0.79 (0.006) 1.19 0.00034 0.85 0.84 (0.009) 1.18 0.00054
443 0.94 0.80 (0.005) 1.14 0.00031 0.86 0.85 (0.009) 1.13 0.00051
488 0.95 0.81 (0.005) 1.06 0.00028 0.87 0.86 (0.009) 1.07 0.00048
531 0.95 0.81 (0.005) 1.00 0.00027 0.88 0.86 (0.008) 1.01 0.00047
547 0.95 0.81 (0.005) 0.98 0.00026 0.88 0.86 (0.008) 0.99 0.00046
667 0.95 0.79 (0.005) 0.85 0.00026 0.88 0.85 (0.008) 0.88 0.00044

apg 412 0.97 0.95 (0.005) 1.08 0.01031 0.94 1.02 (0.007) 1.09 0.01509
443 0.94 0.89 (0.006) 1.09 0.01246 0.91 0.94 (0.008) 1.09 0.01608
488 0.91 0.83 (0.007) 1.03 0.00785 0.86 0.90 (0.010) 1.03 0.01118
531 0.86 0.75 (0.008) 0.95 0.00468 0.77 0.85 (0.012) 0.96 0.00713
547 0.85 0.72 (0.008) 0.91 0.00358 0.76 0.84 (0.013) 0.94 0.00567
667 0.78 0.68 (0.010) 1.07 0.00871 0.68 0.74 (0.014) 1.11 0.01249

aϕ 412 0.89 0.80 (0.007) 1.19 0.01295 0.85 0.82 (0.009) 1.21 0.01601
443 0.90 0.82 (0.007) 1.21 0.01438 0.86 0.82 (0.009) 1.22 0.01720
488 0.86 0.77 (0.008) 1.17 0.00891 0.80 0.80 (0.011) 1.19 0.01166
531 0.79 0.69 (0.009) 1.13 0.00513 0.69 0.75 (0.013) 1.16 0.00726
547 0.79 0.65 (0.009) 1.08 0.00390 0.69 0.75 (0.013) 1.16 0.00578
667 0.77 0.67 (0.010) 1.13 0.00888 0.67 0.74 (0.014) 1.16 0.01261

aWe used all available wavelengths in the inversion (left columns) and only MODISA visible wavelengths in the inversion (right
columns). The sample size (N) was 1437. r2 is the regression coefficient of determination. Slope(SE) is the regression slope and
standard error. We calculated Ratio as median (ORM/truth). RMSE is the RMSE (the root of the residual mean square, in units
equal to that of the observation).
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to reason that satellite retrievals of these stocks do
not independently provide information about the ver-
tical distribution of the constituents or the thick-
nesses of their layers. To circumvent this, previous
studies used external hydrographic and environmen-
tal information to make assumptions about vertical
distributions [27,62]. Uitz et al. [27], for example,
suggested that the vertical structure of Cϕ�z� could
be inferred on average in the open ocean from its ab-
solute magnitude and some knowledge of the local
average mixed layer depth. Not surprisingly, the rate
of change of Cϕ with bloom depth (NZ) varied
strongly with the magnitude of the subsurface maxi-
mum (Nmax).

Vertically displacing the subsurface N. miliaris
maxima resulted in different Rrs�λ� [Figs. 5(B)–5(E)].
The depths of subsurface features and the bulk at-
tenuating (absorbing and scattering) properties of
the water mass modulate the average contributions
of each constituent to Rrs�λ� [56,57]. Consider again
the Nmax � 6 mgm−3 in Fig. 5 (red circles). The color
of the water appeared green under a near-surface
bloom and progressively bluer as this bloom sank
deeper into the water column [Fig. 5(E)]. All Nmax

demonstrated this, but the effect lessened as it
decreased. For the case study presented in Fig. 5,
Rrs�λ� appeared similar for the multiple scenarios
with Cϕ between 0.6 and 0.75 mgm−3 (compare,
e.g., the dashed lines in Figs. 5(B) and 5(C) with
the dashed–dotted lines inFigs. 5(D) and 5(E).Within
the full population of simulations, however, Rrs�λ�
differed for many instances of common Cϕ. Fig. 3(B)
showsRrs�λ� for simulations withCϕ near ∼1 mgm−3,

many of which vary significantly in the blue–green
part of the spectrum. This variability in Rrs�λ� for
commonCϕ contributes to the overall variability seen
in algorithm development data sets used to develop
commonbio-opticalmodels (see, e.g., the vertical scat-
ter of the radiometric data for each given optically
weighted Cϕ presented in Figs. 3 and 6 of O’Reilly
[18] and Fig. 5(A) of Werdell and Bailey [61]).

D. Retrieval of Multiple Phytoplankton Species

The ORM demonstrated decent skill in identifying
N. miliaris and diatoms, but with sufficient

Fig. 5. Optically weightedCϕ and correspondingRrs�λ� as a function ofN.miliaris bloom depth (NZ) andmagnitude (Nmax). This subset of
simulations has constant CϕD (� 0.5 mgm−3),NW �� 5 m�, ag�443� �� 0.005 m−1�, ad�443� �� 0.002 m−1�, and bp�555� �� 0.1 m−1�. Panel
(A) shows optically weighted Cϕ versus bloom depth, with colors representing different bloom magnitudes. Panel (B) shows Rrs�λ� for a
bloom magnitude of 0.5 mgm−3, with different line styles representing different bloom depths. Panels (C)–(E) follow Panel (B), but for
bloom magnitudes of 1, 3, and 6 mgm−3. Colors in Panels (B)–(E) follow Panel (A) for clarity.

Table 3. Optically weighted Cϕ, Kd �490�, and z90 for the Example
Simulations Presented in Fig. 5

Nmax NZ Cϕ Kd�490� z90
(mgm−3) (m) (mgm−3) (m−1) (m)

0.5 1 0.69 0.052 19.0
0.5 5 0.69 0.054 18.0
0.5 10 0.61 0.054 18.0
0.5 15 0.56 0.054 18.0
1 1 0.89 0.056 17.5
1 5 0.90 0.061 16.0
1 10 0.72 0.061 16.0
1 15 0.61 0.058 17.0
3 1 2.04 0.081 12.0
3 5 1.89 0.110 9.0
3 10 1.01 0.086 11.5
3 15 0.69 0.065 14.5
6 1 5.58 0.211 4.5
6 5 2.74 0.168 5.5
6 10 1.17 0.096 9.5
6 15 0.75 0.070 13.5
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variability to indicate that the inversion cannot pro-
vide absolute magnitudes for both species at all
times. All ORMs most effectively retrieve total ab-
sorption (e.g., [20,21]). Deconstructing total absorp-
tion into its CDOM�NAP and phytoplankton
components remains more uncertain (Table 2) and,
not surprisingly, decomposing the total phytoplank-
ton signature into multiple components carries
additional uncertainties [23,24,29]. In general, the
ORM tended to underestimate N. miliaris and to
overestimate diatoms. When using all wavelengths
in the inversion, the ORM-to-synthesized bias,
RMSE, and regression slope changed from
0.093 mgm−3, 0.261 mgm−3, and 0.82 for total Cϕ
to 0.097 mgm−3, 0.215 mgm−3, and 0.93 for CϕD
and −0.005 mgm−3, 0.310 mgm−3, and 0.64 for
CϕN (Fig. 6). We calculated bias as the average differ-
ence between modeled and measured values. The
differences amplified when using only MODISA
wavelengths, with biases, RMSEs, and slopes chang-
ing from 0.094 mgm−3, 0.313 mgm−3, and 0.82 forCϕ
to 0.113 mgm−3, 0.402 mgm−3, and 1.02 for CϕD and
−0.019 mgm−3, 0.345 mgm−3, and 0.55 for CϕN. The
ORM exclusively underestimated N. miliaris at
concentrations greater than 2 mgm−3.

The ORM frequently identified monospecific
phytoplankton populations, where only N. miliaris

or only diatoms were present. For the former, the
ORM routinely detected N. miliaris, but often also
returned false-positives for diatoms [Figs. 7(A) and
7(B)]. In general, the ORM underestimated CϕN
(most significantly when the N. miliaris bloom re-
sided at the surface), which resulted in an overesti-
mation of CϕD. The lower cluster of CϕN ≥ 2 mgm−3

in Figs. 7(A) and 7(B) corresponds to the CϕD ≥
0.5 mgm−3 in these panels. Reducing the spectral
resolution of Rrs�λ� to MODISA wavelengths ampli-
fied the underestimation of CϕN for concentrations
greater than 4 mgm−3 and increased the magnitudes
of false positives for diatoms. When only diatoms
were present, however, the ORM never significantly
detected N. miliaris (always <0.2 mgm−3) and suc-
cessfully estimated CϕD over its full dynamic range
[Figs. 7(C) and 7(D)]. Using only MODISA wave-
lengths did not significantly degrade these results.
In general, the ORM did not identify N. miliaris
when it was absent and often identified N. miliaris
when it was present. Although the quantification
of CϕN and CϕD may be imperfect, this suggests that
a positive ORM-derived CϕN reliably indicates the
presence ofN.miliaris somewhere in the upper water
column.

Equally mixed populations of N. miliaris and
diatoms produced Rrs�λ� that occasionally challenged
the ORM. Consider the following scenarios presented
in Fig. 8: monospecific CϕD � 0.5 mgm−3, monospe-
cific CϕN � 0.5 mgm−3, monospecific CϕD �
1 mgm−3, monospecific CϕN � 1 mgm−3, and mixed
CϕD � CϕN � 0.5 mgm−3 (total Cϕ � 1 mgm−3).
The four monospecific populations produced suffi-
ciently unique Rrs�λ� such that the ORM effectively

Fig. 6. Comparison of ground-truth (synthesized) and ORM-
derived Cϕ (A) and (B), CϕD (C) and (D), and CϕN (E) and (F) using
all available wavelengths in the inversion (left column) and only
MODISA visible wavelengths in the inversion (right column).
Colors as in Fig. 4.

Fig. 7. Comparison of ground-truth (synthesized) and ORM-
derived CϕD and CϕN for a mono-species subset of simulations us-
ing all available wavelengths in the inversion (left column) and
only MODISA visible wavelengths in the inversion (right column).
We considered only synthesized CϕD � 0.02 and CϕN ≥ 0.5 mgm−3

in panels (A) and (B). We considered only synthesized CϕD ≥ 0.1
and CϕN � 0 mgm−3 in panels (C) and (D). Crosses and filled
circles show CϕN and CϕD, respectively.
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estimated Cϕ, CϕN , and CϕD without false positives
for the absent species. In the mixed population,
where N. miliaris and diatoms both contributed
equally to Cϕ, the ORM achieved accurate Cϕ, but
less effectively separated the two phytoplankton
populations. The ORM attributed much of the
Cϕ to CϕD (0.75 mgm−3), which is consistent with
our previous general observation that the ORM
tends to slightly over- and underestimate diatoms
and N. miliaris, respectively. Equal contributions
by N. miliaris and diatoms did not produce Rrs�λ�
that fell equally between the two monospecific
spectra, suggesting to a first-order that the contribu-
tions of the two species to Rrs�λ� were not strictly
additive. The case studies with equivalent Cϕ
presented in Figs. 5(B) and 5(C) show a clean pro-
gression in Rrs�λ� as a bloom deepened in the
water column and the color of the water transitioned
from green to blue. In contrast, the spectra in
Fig. 8(B) do not demonstrate a clean transition as
species mix.

The accuracy of the ORM showed dependency on
the depth of the N. miliaris bloom when considering
all available wavelengths and only MODISA wave-
lengths. On average, this dependency did not vary
with the total magnitude of Cϕ (Table 4). For the full
population of synthesized data, the ORM consis-
tently under- and over-estimated CϕN and CϕD,
respectively, when NZ � 1 m (Fig. 9). This under-
and overestimation of CϕN and CϕD generally re-
versed when NZ deepened. In all cases, the
differences in CϕN exceeded those for CϕD. With
one exception (the Cϕ > 1 mgm−3 subset at 15 m),
the largest positive differences in CϕN appeared at
5 m and decreased as the subsurface maxima deep-
ened. Overall, the ORM overestimatedN. miliaris by
23.8% to 77.0%, on average, for NZ ≥ 5 m. Absolute
biases inCϕN decreased with increasing bloom depth,
which is not surprising given that the (optically
weighted) total Cϕ also decreased with increasing
bloom depth (see, e.g., Fig. 5). In contrast to
N. miliaris, the largest differences in CϕD occurred
near the surface. At depth, ORM retrievals ofCϕD dif-
fered from ground truth by<8%, with only one excep-
tion (the Cϕ < 1 mgm−3 subset at 15 m), and
maintained null absolute biases (<0.07 mgm−3).

4. Discussion

A. Interpreting the ORM Retrievals

Ocean color satellite instruments provide rich data
streams for studying phytoplankton dynamics. The
community considers these data streams to be suffi-
ciently critical to require that upcoming ocean color
satellite programs include capabilities to discrimi-
nate between phytoplankton groups in support of ad-
vanced carbon studies [14,15]. Our study focused on
a class of algorithm known as ORMs (also known as
semi-analytic algorithms). Few studies have demon-
strated the ability of an ORM to successfully de-
convolve aϕ�λ� into contributions by individual
phytoplankton groups over a large range of environ-
mental conditions [37]. In practice, ORMs are cur-
rently applied to satellite measurements of Rrs�λ�
without exact a priori knowledge of phytoplankton
physiological state or environmental conditions for
a given pixel. They operate assuming that their

Fig. 8. Five example simulated Rrs�λ� and their corresponding ORM-derived Cϕ. Each simulation was created using ad�443� � 0.002,
ag�443� � 0.005, and bd�555� � 0.1 m−1. Panel (A) presents spectra forCϕD ∼ 0.5 mgm−3 withoutN. miliaris (black) and CϕN ∼ 0.5 mgm−3

without diatoms (orange). Panel (B) presents spectra for CϕD ∼ 1 mgm−3 without N. miliaris (blue), CϕN ∼ 1 mgm−3 without diatoms
(green), and a mixed population with CϕD and CϕN ∼ 0.5 mgm−3 each (red). Panel (C) presents ground-truth (synthesized) versus
ORM comparisons, with colors referring to the corresponding Rrs�λ�, and circles, crosses, and asterisks indicating Cϕ, CϕD, and CϕN ,
respectively.

Table 4. Median Relative Percent Differences (MPD) and Absolute
Biases between the Ground-Truth-Synthesized and ORM-Derived

CϕN and CϕD
a

CϕN CϕD

NZ MPD Bias MPD Bias

All Cϕ 1 −30.6 −0.173 19.5 0.140
5 73.5 0.231 −4.4 −0.031

10 56.8 0.073 1.9 0.005
15 35.5 0.023 7.9 0.030

Cϕ < 1 mgm−3 1 −23.3 −0.061 13.5 0.030
5 73.8 0.150 1.9 −0.001

10 52.3 0.058 −0.7 −0.001
15 29.8 0.017 13.5 0.034

Cϕ > 1 mgm−3 1 −33.3 −0.677 27.1 0.181
5 70.8 0.402 −7.0 −0.068

10 60.7 0.119 2.8 0.028
15 77.0 0.055 −0.1 −0.001

aShown as a function of the depth of the subsurface N.
miliaris maxima (NZ). Differences were calculated as in
Fig. 8. Biases were calculated as the average difference
between modeled and ground-truth values. Units for MPD
and bias are % and mgm−3, respectively. Statistics are
presented for all simulations, simulations with
Cϕ < 1 mgm−3, and simulations with Cϕ > 1 mgm−3.
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adopted eigenvectors adequately represent local
conditions at the moment the measurement is made.
We constructed a controlled environment where the
eigenvectors used to parameterize the ORMwere the
same as those used to build the input Rrs�λ�. Doing so
generated scenarios for which we had exact (simu-
lated) knowledge of phytoplankton physiological
state and environmental conditions. Comparisons
of ORM retrievals and simulation inputs within this
ideal environment should reveal weaknesses in
ORM operation and interpretation that merit sub-
sequent review. To ensure broad applicability of
our results, we conducted our analyses using a very
common ORM algorithmic form (built using the
GIOP framework [21] and analogous in form to that
of, e.g., Maritorena et al. [19], Roesler et al. [35], and
Westberry et al. [37]).

Our results reaffirm previous conclusions that
ORMs effectively separate the total signal of the
collective phytoplankton community from other
water column constituents, such as CDOM and NAP
[20,21] (Fig. 4, Table 2). Our results suggest, how-
ever, that the absolute accuracy of ORM retrievals
degrades when further deconstructing the derived
Cϕ and IOPs into additional subcomponents, even
under perfectly controlled conditions (Fig. 6). Despite
this, we view our results as positive. Although the
absolute magnitudes of CϕN and CϕD maintained
biases, the ORM successfully detected whether or
not N. miliaris appeared in the simulated water
column for both the limited (MODISA) and expanded

(PACE-like) wavelength suites (Figs. 6–8). This
quantitatively calls for caution when interpreting
the absolute magnitudes of the retrievals, but quali-
tatively suggests that the ORM provides a robust
mechanism for identifying the presence or absence
of N. miliaris.

Let us briefly explore this suggestion further. A
positive retrieval of CϕN reliably indicated the pres-
ence of N. miliaris at some near surface (≤15 m)
position in our simulations. The ORM effectively
identified diatoms and often identified N. miliaris
in mono- and mixed-populations, but often with im-
perfect absolute magnitudes (e.g., CϕN showed nega-
tive biases when the bloom maxima resided near the
surface and positive biases when it deepened). De-
spite this, N. miliaris was always present when
the ORM retrieved positive CϕN . The ORM did fail
to identify N. miliaris on occasion and produced
corresponding false positives for diatoms, but it
never substantially identified N. miliaris for simula-
tions with only diatoms. In other words, when
N. miliaris was present, the ORM often (but not
always) estimated CϕN > 0 mgm−3, but when
N. miliaris was not present, the ORM never esti-
mated CϕN ≫ 0 mgm−3. At a minimum then, this
suggests that the ORM can be used to indicate
whether or not N. miliaris is present in a satellite
pixel. Indeed, we explored the qualitative use of
satellite-derived CϕN in a companion study via appli-
cation of the ORM to MODISA to simply identify
and catalog pixels with substantially positive CϕN .

Fig. 9. Comparisons of ground-truth (synthesized) and ORM-derived CϕN (left column) and CϕD (center column) using all available wave-
lengths in the inversion. Results are stratified by depth of theN.miliaris subsurface maxima, withNZ � 1, 5, 10, and 15m shown from top
to bottom. The right column presents frequency distributions of relative percent differences, calculated as 100%* (ORM/synthesized-1).
Solid and dotted lines indicate differences for CϕN and CϕD, respectively.
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To a first-order, applying this (binary absence or
presence) identification scheme to the full MODISA
data record permitted us to study the spatial and
temporal distribution ofN.miliaris appearances over
a decade in the northern Arabian Sea [63].

B. Phytoplankton Absorption Eigenvectors

Both spectral resolutions yielded comparable regres-
sion statistics for the retrieved bbp�λ�, apg�λ�, and
aϕ�λ�, as evidenced by r2, regression slopes, and
median ORM-to-synthesized ratios (Fig. 4, Table 2).
Using all available wavelengths enabled somewhat
improved separation of CϕD and CϕN (Fig. 6). The
variability in all IOP and Cϕ retrievals (not just
CϕD and CϕN), however, increased significantly when
using Rrs�λ� with reduced spectral resolution (see,
e.g., the RMSE in Table 2). The slopes from 400–
440 nm and from 440–510 nm differ substantially
for a�

ϕD�λ� and a�
ϕN�λ� (Fig. 1). The MODISA wave-

length suite maintains less spectral information in
these spectral ranges (and, thus, fewer degrees of
freedom in the inversion) with which to discriminate
betweenN. miliaris and diatoms. In other words, the
optical signatures of a�

ϕD�λ� and a�
ϕN�λ� contrast less

when viewed at only MODISAwavelengths versus at
PACE-like wavelengths. This has implications for
planning new satellite missions with mandates to
deliver data records with improved capabilities for
discriminating between phytoplankton species
[14,15]. Certainly, the SeaWiFS and MODISA data
records (and others) stimulated innovation and
progress toward the remote identification of phyto-
plankton groups [22–31,34,36,37,40]. Given our
results, however, we expect that new satellite instru-
ments with finer spectral resolution will enable more
quantitative resolution of multiple species with
fewer uncertainties [32,35] (Figs. 6 and 7).

Single a�
ϕ�λ� cannot perfectly represent any phyto-

plankton species under all conditions of growth, nu-
trient availability, and ambient light [29,64]. This
presents problems for ocean color remote sensing,
as the phytoplankton population under observation
and its physiological state cannot be known a priori.
Previous studies adopted varied methods of express-
ing phytoplankton absorption: (1) single a�

ϕ�λ�
derived from global assemblies of in situ measure-
ments [19,46]; (2) multiple a�

ϕ�λ� to simultaneously
represent several phytoplankton size classes
[23,24,29,35]; (3) dynamic assignment of a�

ϕ�λ� based
on estimates ofCϕ [21]; and (4) iterations on ranges of
a�
ϕ�λ� [65,66]. Our ORM generically falls into method

(2), but might realize future benefits from being re-
fined to the forms of (3) or (4). Additional in situmea-
surements from various stages of diatom and N.
miliaris blooms during the NEM could be used to call
the ORM in an iterative fashion using ranges of ob-
served eigenvectors. More sophisticated parameter-
izations of aϕ�λ� might also be developed to replace
the linear expression we adopted �� Cϕa�

ϕ�λ��
[64,67]. Nevertheless, these approaches all require
some a priori assumption of phytoplankton spectral

shape(s). The need to make such an assumption
argues in favor of retrospective analysis when
interpreting satellite time-series of Cϕ and aϕ�λ� to
verify that local hydrodynamics, environmental con-
ditions, and biology support the a priori selection of
eigenvectors.

With respect to the mechanics of our analyses, our
choice in a�

ϕ�λ� remains irrelevant. However, they
merit additional discussion in the context of interpre-
tation of satellite data records. We generated our si-
mulated IOP profiles and configured the ORM using
consistent a�

ϕ�λ�. Despite this, the ORM retrievals did
not always exactly reproduce the inputs CϕN and
CϕD. We chose diatoms and N. miliaris because they
best represent significantly different end-members
in the Arabian Sea, and because the ability to detect
N. miliaris using long-term satellite data records
presents an opportunity to quantify its emerging
presence over the past decade. We know, however,
that additional phytoplankton species coexist and
flourish in the Arabian Sea, such as dinoflagellates
and Trichodesmium spp.Unfortunately, the ORM be-
came unstable when we added a third phytoplankton
component (raising the unknowns to five), particu-
larly when limiting the runs to MODISA wave-
lengths. In the two-component system, however,
certain combinations of our a�

ϕN�λ� and a�
ϕD�λ� yielded

spectra that resembled that of dinoflagellates (see
Thibodeau et al. [7]). Following, in scenarios where
a�
ϕ�λ�within an ORM do not represent the population

under observation, the ORM defaults to combina-
tions of its native phytoplankton components and
misidentifies the species present. This supports
our recommendation of caution when interpreting
the absolute magnitudes of multiple phytoplankton
eigenvalues. It also argues that, for targeted applica-
tion of ORMs, a configuration for alternate phyto-
plankton species would produce more reliable and
appropriate IOPs outside of the NEM, when we
would not expect an abundance of N. miliaris.

Our choice in a�
ϕD�λ� and a�

ϕN�λ� contributed in part
to the vertical biases seen in CϕN . Concentrations of
absorbing constituents control the shape of Rrs�λ�,
whereas the magnitude of scattering relative to ab-
sorption modulates the brightness. Near the surface,
pure seawater absorption dominates the total absorp-
tion signal atwavelengths 600nm [51]. AsCDOMand
NAP contribute very little to total absorption in this
spectral range [48], phytoplankton begin to shape
Rrs�λ� in the absence of these other water column con-
stituents as blooms near the surface. Blooms of suffi-
cientmagnitude also enhance backscattering and can
notably fluoresce [68], which elevates red Rrs�λ�, as
demonstrated in Figs. 5(D) and 5(E). In these figures,
the ratio of Rrs�443�-to-Rrs�670� decreases toward
unity as the simulated bloom maxima shallows.
The a�

ϕD�λ� and a�
ϕN�λ� we adopted also maintain sub-

stantially different blue-to-red ratios, with diatoms
more closely approaching a ratio of one (Fig. 1). We
expect that these near-unity blue-to-red relationships
favored the retrieval of CϕD when NZ � 1 m. This
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favoritism switched to CϕN as the bloom maxima
deepened and the redRrs�λ� becamewater-dominated
instead of phytoplankton-dominated.

Several of our processing choices complicate this
interpretation of vertical biases. First, as clearly
demonstrated near 683 nm in Figs. 5(D) and 5(E),
we enabled the fluorescence capabilities of HE5. A
discussion of the fluorescence model incorporated
into HE5 exceeds the scope of this manuscript. In
contrast to HE5, however, our ORM (as well as most
others) does not account for phytoplankton fluores-
cence [20,21]. To our knowledge, most (quasi-single
scattering) relationships between apparent and
IOPs, e.g., the coefficients in Eq. (2), or simplify con-
tributions by fluorescence to Rrs�λ�. Second, the Lev-
enberg–Marquardt inversion scheme employs a chi-
squared cost function that minimizes relative
differences between the fit and measured Rrs�λ� with
equal consideration of all wavelengths [21]. Given
the weakness of the red Rrs�λ� signal in most open
ocean waters, small absolute differences between
fit and measured spectra amplify into substantial
relative differences, which can overweight this re-
gion of the spectrum. Previous studies partially
addressed this by constraining their inversion to
412–555 nm [19,65]. Doing so using our simulations
increased the variability of our bulk-derived IOPs.
For example, the RMSEs for bbp�443� and apg�443�
rose from 0.00031 to 0.00056 and 0.0125 to 0.0167,
respectively. We recommend that subsequent studies
explore revised cost functions that consider both ab-
solute and relative goodness-of-fits [15] and/or alter-
nate spectral weighting schemes (see e.g., the
discussion of this in Werdell et al. [21]).

C. Future Directions

We conclude with a discussion of several general
paths forward: (1) refining the ORM parameteriza-
tion and evaluating alternate configurations (e.g., fol-
lowing Werdell et al. [21]); (2) using other ORM
products, namely bbp�λ�, to help detect N. miliaris;
and (3) re-exploring the role of vertical structure in
interpretations of ocean color data records. With
regard to the ORM itself, we reaffirmed that a
GIOP-like form can produce accurate estimates of
bulk IOPs [bbp�λ�, adg�λ�, and aϕ�λ�] as has been
repeatedly demonstrated (e.g., [19–21,35,37]). The es-
timates showed biases, whereas our ORM effectively

discriminated betweenCϕ from diatoms andN.milia-
ris.With regard to improving the latter, reconsidering
our treatment of phytoplankton absorption remains
an obvious next step as discussed in Section 4.B.
Other ORM parameterizations could also be refined,
several of whichwe briefly explored. Using linearma-
trix inversion [65,66] in lieu of the nonlinear
Levenberg–Marquardt inversion scheme yielded
almost identical results, but with fewer overall viable
retrievals. Alternate forms of b�bp�λ� and a�

dg�λ� could
also be adopted [31,46]. That said, ORM-retrieved
CϕN demonstrated no significant dependence on the
magnitudes of ag�λ�, ad�λ�, or bd�λ� (Fig. 10). Higher
ag�443� and ad�443� corresponded to slightly elevated
ORM-derived CϕN , but these differences fell well
below variances seen elsewhere in our analyses, such
as by NZ. We expect to pursue incorporating pixel
classification [69] and ensemble (iterative or boot-
strapping) [65,66] schemes into future studies, both
of which provide vehicles for considering ranges of
eigenvectors within the ORM.

Our analyses attempted to discriminate between
diatoms andN. miliaris using phytoplankton absorp-
tion coefficients and Cϕ. However, differences in dia-
tom and N. miliaris backscattering properties could
also be exploited to identify these species. Changes in
the bbp�λ�-to-Cϕ ratio over time, for example, would
indicate changes in the optics (e.g., average particle
size) or biology (e.g., phytoplankton or nonpigmented
grazers). Figure 11 presents the relationship be-
tween bbp�443� andCϕ as a function of the abundance
of N. miliaris for both the simulated data set (panel
A) and the ORM (panel B). The linear pattern of
bbp�443� versus Cϕ results from our parameteriza-
tion of the simulated profiles (Table 1). Two features
stand out. First, the simulated and ORM relation-
ships exhibit consistent patterns in CϕN , dynamic
ranges, and slopes. The simulated relationships re-
present a forward solution for the exact radiative
transfer equations (RTE) while the ORM relation-
ships represent an inversion solution for a simplified
(single scattering) approximation of the RTE. The
similarities in the patterns suggest that the ORM
provides an adequate approximation of the RTE,
with the smearing of points [relative to the clean
slopes in Fig. 11(A)] resulting from the approxima-
tions made. Second, bbp�443� changes with CϕN∕Cϕ;

Fig. 10. Comparisons of ground-truth (synthesized) and ORM-derived CϕN using all available wavelengths in the inversion. Results are
stratified by the varied ag�443� (left), ad�443� (center), and bd�555� (right) used to generate the synthesized IOP profiles and Rrs�λ�.
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although the direction of the change appears to
reverse several times as Cϕ rises from 0 to 6 mgm−3.
In practice, such a pattern could provide a useful in-
dicator of N. miliaris if robust patterns in bbp�λ� ver-
sus CϕN∕Cϕ emerge. However, as no consensus
covariance emerged from our synthesized data set,
similar analyses of in situ data (as they become avail-
able) are warranted.

Synthesized data cannot represent all conditions
at all times. We could endlessly refine the parameter-
izations used to generate the simulated IOP profiles
(Table 1); however, the values we selected correspond
closely to field measurements and produce comple-
mentary Rrs�λ� to those measured in situ (Fig. 2)
[7,40]. Regarding the role of scattering, we assumed
that the N. miliaris and diatom species present
during the NEM are large relative to visible wave-
lengths (thus, our choice of η � 0) [70,71]. Optically,
N. miliaris remains poorly studied relative to other
phytoplankton [49]; however, preliminary studies
suggest inefficient light scattering, consistent with
its cell-specific properties [40] (thus, our choice of
b��555� � 0.15 m2 mg−1). Although our constant
bb�λ�∕b�λ� of 0.01 remains a vetted global average,
we also acknowledge that this ratio ranges from
0.005 to 0.02 over a range of oceanographic condi-
tions [53,72]. Currently, we have no knowledge of
the scattering phase function of N. miliaris, but ex-
pect it might differ from that embedded in the Monte
Carlo simulations used to generate the apparent-to-
IOP relationship expressed in Eq. (2) [47]. An optical
closure study following Tzortziou et al. [73] would be
prudent as subsequent work to better constrain
bb�λ�∕b�λ� (and, thus, the scattering phase function)
of species present during the NEM.

Finally, it remains well-known within the oceano-
graphic community that ocean color estimates
of water column properties represent optically
weighted contributions that do not independently
provide information on vertical structure [27,56,62].
While we did not originally intend to revisit this,
our simulations provided an opportunity to pose a
reminder and offer two related suggestions with po-
tential for advancing our collective ability to remotely
sense phytoplankton community composition. First,
if the community wants true estimates of vertical
structure from space, alternate technologies need

to be developed [74] and/or methods that make use
of complementary environmental information need
to be nurtured [27,62]. The case studies presented
in Fig. 5 demonstrate that optically weighted values
cannot independently describe the vertical position,
subsurface magnitude and thickness, or age of a
bloom. Furthermore, our results provided little evi-
dence that the ORM better detects N. miliaris as
its bloom expands in abundance or thickness. While
the known biases with NZ were quantifiable in this
controlled study, the vertical position of N. miliaris
detected from space will not be known a priori and
cannot currently be independently inferred in all
water masses at all times using passive ocean color
radiometry [27,62]. In practice, this simply means
that absolute abundances for multiple ORM-derive
phytoplankton communities can only be compared
with the understanding that they represent
pseudo-depth-integrated values.

Second, reconstructing the optically weighted Cϕ
seen by a satellite instrument requires collecting bio-
geochemical and radiometric data with sufficient
vertical resolution to capture heterogeneity over
the layer defined by z90 [57]. The vertical composition
and structure of the water column shapes what the
satellite measures and, therefore, drives how in situ
measurements should be collected and prepared for
use in both ORM development (parameterization)
and ocean color satellite data product validation.
For a heterogeneous water column with deep Cϕ
maxima appearing within the first e-folding depth,
near surface measurements alone cannot be accu-
rately compared with satellite-derived data products
[61]. In practice, this argues for specialized in situ
data collection and processing to support ocean color
satellite validation activities.

5. Conclusions

We pursued this work for two primary reasons: (1) to
contribute to the growing foundation upon which
advanced methods for remote phytoplankton detec-
tion are being built and (2) to begin developing a
method to identify N. miliaris in the northern
Arabian Sea. We explored the capabilities of an
ORM to discriminate between two distinct phyto-
plankton communities under a diverse array of
biophysical conditions. As in previous studies, the

Fig. 11. Cϕ versus bbp�443�. Panel (A) showsCϕ from our simulated profiles versus backscattering fromHE5. Panel (B) showsCϕ from the
ORM versus backscattering from the ORM. Colors indicate the magnitude of CϕN in mg m−3.
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ORM successfully separated the total phytoplankton
signal from those of other water column constituents.
The ORM effectively separated the individual contri-
butions of N. miliaris and diatoms; however, the
absolute estimates showed biases even under our
perfectly controlled conditions. The vertical struc-
ture of our synthesized blooms highly influenced
these biases, analysis of which reaffirmed that
ORM retrievals alone cannot provide information
on the vertical structure of a phytoplankton bloom.
In the end, our results quantitatively call for caution
when interpreting the absolute magnitudes of the
retrievals, but qualitatively suggest that the ORM
provides a robust mechanism for identifying the
presence or absence of N. miliaris. Not surprisingly,
incorporating Rrs�λ� at additional wavelengths im-
proved the quality of the ORM retrievals, underscor-
ing the benefit of additional spectral information on
forthcoming satellite instruments with mandates to
produce phytoplankton community data products. In
the short-term, we propose that our ORM (and other
ORMs of this form) can adequately support studies
that require only identifications of phytoplankton
groups. In the long-term, we anticipate the quantita-
tive skills of ORMs to improve as additional technol-
ogies, relevant in situ data, and environmental data
get routinely included in modeling and data analysis
activities.
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