ocssw
V2022
|
anc_seaice.c
int32_t SDSinFile(char *sdsname, char *longname, char *units, char *datafmt, int32_t datatype, int32_t sdfid, int32_t rank, int32_t *shape, void *data, int32_t gridid)
void mk_smooth_ice_map_(char *char_ice, float *frac_ice_smoothed)
int addAttr(int32_t sdsid, char *dataattr, int32_t datatype, char *dataunit)
Definition: ANCroutines.c:222
int readgrib2(char *file, int npix, int nlin, int rgmode, float *data)
Definition: readgrib.c:77
Definition: ancil.h:70
int wrtattr(int32_t dfile, struct annotation *annot, int numannarr)
Definition: ANCroutines.c:631
void julian_(double *dtin, double *d_jd)
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a message
Definition: HISTORY.txt:644
int32_t wrtsds(int32_t sdfid, int rank, int32_t *shape, int32_t datatype, char *datalabel, void *data)
int readgrib(char *file, int npix, int nlin, float *data, int *year, int *month, int *day, int *hour)
Definition: readgrib.c:6
int grib2_t(char *grib2_t_str, int *year, int *doy, int *hour, int *npix, int *nlin, int *h_fcst)
Definition: readgrib.c:158
this program makes no use of any feature of the SDP Toolkit that could generate such a then geolocation is calculated at that and then aggregated up to Resolved feature request Bug by adding three new int8 SDSs for each high resolution offsets between the high resolution geolocation and a bi linear interpolation extrapolation of the positions This can be used to reconstruct the high resolution geolocation Resolved Bug by delaying cumulation of gflags until after validation of derived products Resolved Bug by setting Latitude and Longitude to the correct fill resolving to support Near Real Time because they may be unnecessary if use of entrained ephemeris and attitude data is turned resolving bug report Corrected to filter out Aqua attitude records with missing status helping resolve bug MOD_PR03 will still correctly write scan and pixel data that does not depend upon the start time
Definition: HISTORY.txt:248
Extra metadata that will be written to the HDF4 file l2prod rank
Definition: HOWTO_Add_a_product.txt:80
HDF4 data type of the output SDS Default is DFNT_FLOAT32 Common types used DFNT_FLOAT32
Definition: HOWTO_Add_a_product.txt:67
no change in intended resolving MODur00064 Corrected handling of bad ephemeris attitude resolving resolving GSFcd00179 Corrected handling of fill values for[Sensor|Solar][Zenith|Azimuth] resolving MODxl01751 Changed to validate LUT version against a value retrieved from the resolving MODxl02056 Changed to calculate Solar Diffuser angles without adjustment for estimated post launch changes in the MODIS orientation relative to incidentally resolving defects MODxl01766 Also resolves MODxl01947 Changed to ignore fill values in SCI_ABNORM and SCI_STATE rather than treating them as resolving MODxl01780 Changed to use spacecraft ancillary data to recognise when the mirror encoder data is being set by side A or side B and to change calculations accordingly This removes the need for seperate LUTs for Side A and Side B data it makes the new LUTs incompatible with older versions of the and vice versa Also resolves MODxl01685 A more robust GRing algorithm is being which will create a non default GRing anytime there s even a single geolocated pixel in a granule Removed obsolete messages from seed as required for compatibility with version of the SDP toolkit Corrected test output file names to end in per delivery and then split off a new MYD_PR03 pcf file for Aqua Added AssociatedPlatformInstrumentSensor to the inventory metadata in MOD01 mcf and MOD03 mcf Created new versions named MYD01 mcf and MYD03 where AssociatedPlatformShortName is rather than Terra The program itself has been changed to read the Satellite Instrument validate it against the input L1A and LUT and to use it determine the correct files to retrieve the ephemeris and attitude data from Changed to produce a LocalGranuleID starting with MYD03 if run on Aqua data Added the Scan Type file attribute to the Geolocation copied from the L1A and attitude_angels to radians rather than degrees The accumulation of Cumulated gflags was moved from GEO_validate_earth_location c to GEO_locate_one_scan c
Definition: HISTORY.txt:464
How many dimensions is the output array Default is Not sure if anything above will work correctly strcpy(l2prod->title, "no title yet")
int8 check_usage(int argc, char *argv[], int *anctyp, int *n_opt_arg, char *source_name, int *grib_mode, char *grib2_t_str)
Definition: anc_seaice.c:419
int startHDF(char *outfile, int32_t *sdfid, int32_t *fid, int32_t mode)
Definition: ANCroutines.c:27