ocssw
V2022
|
Typedefs | |
using | and = ===========================================================================V5.0.48(Terra) 03/20/2015 Changes shown below are differences from MOD_PR02 V5.0.46(Terra)============================================================================Changes noted for V6.1.20(Terra) below were also instituted for this version.============================================================================V6.1.20(Terra) 03/12/2015 Changes shown below are differences from MOD_PR02 V6.1.18(Terra)============================================================================Changes from v6.1.18 which may affect scientific output:A situation can occur in which a scan which contains sector rotated data has a telemetry value indicating the completeness of the sector rotation. This issue is caused by the timing of the instrument command to perform the sector rotation and the recording of the telemetry point that reports the status of sector rotation. In this case a scan is considered valid by L1B and pass through the calibration - reporting extremely high radiances. Operationally the TEB calibration uses a 40 scan average coefficient, so the 20 scans(one mirror side) after the sector rotation are contaminated with anomalously high radiance values. A similar timing issue appeared before the sector rotation was fixed in V6.1.2. Our analysis indicates the ‘SET_FR_ENC_DELTA’ telemetry correlates well with the sector rotation encoder position. The use of this telemetry point to determine scans that are sector rotated should fix the anomaly occured before and after the sector rotation(usually due to the lunar roll maneuver). The fix related to the sector rotation in V6.1.2 is removed in this version.============================================================================V6.1.18(Terra) 10/01/2014 Changes shown below are differences from MOD_PR02 V6.1.16(Terra)============================================================================Added doi attributes to NRT(Near-Real-Time) product.============================================================================V6.1.16(Terra) 01/27/2014 Changes shown below are differences from MOD_PR02 V6.1.14(Terra)============================================================================Migrate to SDP Toolkit 5.2.17============================================================================V6.1.14(Terra) 06/26/2012 Changes shown below are differences from MOD_PR02 V6.1.12(Terra)============================================================================Added the doi metadata to L1B product============================================================================V6.1.12(Terra) 04/25/2011 Changes shown below are differences from MOD_PR02 V6.1.8(Terra)============================================================================1. The algorithm to calculate uncertainties for reflective solar bands(RSB) is updated. The current uncertainty in L1B code includes 9 terms from prelaunch analysis. The new algorithm regroups them with the new added contributions into 5 terms:u1:the common term(AOI and time independent) |
using | code = ===========================================================================V4.1.4 04/03/2003============================================================================Special version of MOD_PR02 for MODIS/TERRA processing which writes out *only *MOD021KM output files. Identical in all other respects to MOD_PR02 V4.1.4. This special version is intended for use in MODAPS Oceans reprocessing.============================================================================V4.1.2 12/18/2002============================================================================Changes which do not affect scientific output:1. The R *LUT was eliminated and the equivalent formulation for R *, i.e. 1/(m1 *e_sun_over_pi), was substituted for it in the only instance of its use, which is in the calculation of the RSB uncertainty index. This reduces the size of the Reflective LUT HDF file by approximately 1/4 to 1/3. The equivalent formulation of R *differed from the new by at most 0.056% in test granules and uncertainty differences of at most 1 count(out of a range of 0-15) were found in no more than 1 in 100, 000 pixels. 2. An inappropriate "&" was removed from the data pointer assignment of the "B26_B5_Frame_Offset_Terra" LUT. This had not affected the operation of the code. 3. NEW MOD02OBC Metadata Configuration Files. MCST wishes to have the OBC files archived even when the Orbit Number is recorded as "-1". Accordingly, ECS has delivered new MCF files for OBC output having all elements in the OrbitCalculatedSpatialDomain container set to "MANDATORY=FALSE". 4. pgs_in.version is now reset to "1" in Metadata.c before the call to look up the geolocation gringpoint information.============================================================================V4.0.9 10/02/2002============================================================================Three changes were made to the code which do not affect scientific output:1.(MODIS/TERRA ONLY) The call to "uname" within L1B code to fill in the PROCESSINGENVIRONMENT metadata variable is not actually allowed by the SDP Toolkit. Appropriate calls to "getenv" were substituted. 2. A bug which caused PGE02 to fail when scans were dropped between granules was fixed.(The length of the error message generated was shortened.) 3. Messages regarding an invalid MCST LUT Version or an invalid Write High Resolution Night Mode Output value in the PCF file were added.============================================================================V4.0.7 08/22/2002============================================================================1.(MODIS/TERRA ONLY) The handling of PROCESSINGENVIRONMENT when left blank in the PCF file was changed. The variable is no longer read from the PCF file |
Functions | |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about | scans (one mirror side) prior to the sector rotation are contaminated with anomalously high radiance values. The code change in this update will use the LAST_VALID_SCAN field to find the last synchronized scan(the scan number matches the value in the LAST_VALID_SCAN field) before the sector rotation is reported. The scans in between the last synchronized scan(not inclusive) and the first reported sector rotation should be flagged as sector-rotated to minimize its impact. |
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in all MODIS Terra PGE02 code versions are | even (e.g. 4.2.0, 5.6.8) and all MODIS/Aqua PGE02 code versions are odd(e.g. 4.2.1 |
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in all MODIS Terra PGE02 code versions are The fourth digit of the PGE02 version denotes the LUT version used to produce the granule The source of the metadata environment variable ProcessingCenter was changed from a QA LUT value to the Process Configuration | File (PCF) so that direct broadcast users may change it if they wish. |
actual height is km The height is used only to determine whether the Moon is in the Space View Keep Out | Box (SV KOB). If the Moon is in the KOB |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables | c (a direct print function in the code) was fixed. |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned | BDSM ([NUM_REFLECTIVE_BANDS] *[MAX_DETECTORS_PER_BAND] *[MAX_SAMPLES_PER_BAND] *[NUM_MIRROR_SIDES]) in the LUT HDF files. Each table piece is stored in the HDF file with dimensions NUM_REFLECTIVE_INDICES |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled | integer (SI) from output of code run on IRIX machines. 3. Checking for non-functioning detectors |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were | inserted (MODIS/TERRA ONLY) A new LUN was inserted into the PCF file to handle the new Archive Metadata item "ProcessingEnvironment" and the MOD_PR02 code was changed to read the value of this variable and write it out. Since MANDATORY |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a none of which changes the scientific it is treated as a missing granule and a warning message is printed The code now reads the MCST Version | Number (e.g. "3.0.1.0_Terra") from the PCF file and checks it against the MCST Version number contained in the LUT HDF files. This was done to allow the user to make sure the code is being run using the correct LUT files.(The designators "0_Terra" |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be | calibrated (i.e., the BB DNs are not used as a backup for the SWIR bands). 3. Piecewise linear LUT capability was added to the code. If a LUT table is marked as piecewise linear |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT | table (e.g. m1) to be used for interpolation. The table values will be linearly interpolated using the tables corresponding to the node times bracketing the granule time. If the granule time falls before the time of the first node or after the time of the last node |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration | files (MCFs) were changed to remove "ASSOCIATEDPLATFORMSHORTNAME.2" |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact | details (Other changes) 1. Following a suggestion by Xinmin Hua of EOS |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands replaced by more efficient code Other calculations throughout the code were also made more efficient Aside from a few round off there was no difference to the product The CPU time decreased by about for a day case and for a night case A minor bug in calculating the uncertainty index for emissive bands was corrected The frame | index (0-based) was previously being used the frame number(1-based) should have been used. There were only a few minor changes to the uncertainty index(maximum of 1 digit). 3. Some inefficient arrays(Sigma_RVS_norm_sq) were eliminated and some code lines in Preprocess_L1A_Data were moved into Process_OBCEng_Emiss. There were no changes to the product. Required RAM was reduced by 20 MB. Now |
Variables | |
*********************************************HISTORY for MOD_PR02 TERRA **Version ** | April |
*********************************************HISTORY for MOD_PR02 TERRA **Version ****Point of | Contact |
*********************************************HISTORY for MOD_PR02 TERRA **Version ****Point of never used in the Data | production |
u2 | __pad0__ |
u3 | __pad1__ |
u4 | __pad2__ |
u5 | __pad3__ |
u5 | Uncertainty |
u5 which has been done in | V6 |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific | output |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a | result |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are | inaccurate |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT | detector_quality_flag2_values_table |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT to fill pixels affected by dead subframes with a special value Output the metadata of noisy and dead subframe | lists |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT to fill pixels affected by dead subframes with a special value Output the metadata of noisy and dead subframe Dead Subframe EV | Data |
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT to fill pixels affected by dead subframes with a special value Output the metadata of noisy and dead subframe Dead Subframe EV and Detector Quality Flag2 Removed the function call of Fill_Dead_Detector_SI to stop interpolating SI values for dead | detectors |
see entries | below |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments | correction |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly | interpreted |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track | direction |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS | keywords |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector | dependency |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non | functioning |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for | Band |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive | bands |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in | L1A |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific | SV_250m |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific | SRCA_250m |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific | BB_250m |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific | SD_500m |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific | SV_500m |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific | SRCA_500m |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the | to |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this | case |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV | data |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips | creating |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips | opening |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV | file |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning | of |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf | files |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf which is Bit in the scan by scan bit QA | flags |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf which is Bit in the scan by scan bit QA has been changed Until | now |
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf which is Bit in the scan by scan bit QA has been changed Until Level has set the maneuver bit flag on a scan by scan basis by keying on the SS_FR_SCIABNORM flag passed to Level by the Level telemetry data This flag is manually set by Flight Operations | personnel |
PGE01 | __pad4__ |
PGE01 indicating that PGE02 Version and PGE01 Version were used to produce the granule | PGE02 |
PGE01 | __pad5__ |
PGE01 | __pad6__ |
PGE01 indicating that PGE02 | Version |
PGE01 indicating that PGE02 PGE01 V6 for | MOD01 |
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in | late |
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in all MODIS Terra PGE02 code versions are The fourth digit of the PGE02 version denotes the LUT version used to produce the granule The source of the metadata environment variable ProcessingCenter was changed from a QA LUT value to the Process Configuration | March |
actual height is km The height is used only | once |
actual height is km The height is used only to determine whether the Moon is in the Space View Keep Out the SV data | average |
actual height is km The height is used only to determine whether the Moon is in the Space View Keep Out the SV data which is subtracted from Earth View data before | calibration |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where | NUM_REFLECTIVE_INDICES |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where | SAMPLES_PER_500M_BAND = 2 |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and | SAMPLES_PER_1KM_BAND |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess | c |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any | purpose |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of | variables |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector | rotation |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor | b1 |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing | granules |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding | SI |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag | TEB_B1_NOT_CALCULATED |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag | value |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be | computed |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not | specified |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a | message |
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a none of which changes the scientific it is treated as a missing granule and a warning message is printed The code now reads the MCST Version etc refer to the LUT versions A small bug in Preprocess c was | corrected |
an array had not been initialized Several spelling and grammar corrections were | made |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF | Previously |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old | algorithm |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body | DNs |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the | change |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of | tables |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration | ASSOCIATEDSENSORSHORTNAME |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification | documents |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands | preprocessing |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands replaced by more efficient code Other calculations throughout the code were also made more efficient Aside from a few round off | differences |
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands replaced by more efficient code Other calculations throughout the code were also made more efficient Aside from a few round off there was no difference to the product The CPU time decreased by about for a day case and for a night case A minor bug in calculating the uncertainty index for emissive bands was corrected The frame the required RAM for each execution is MB on the DEC ALPHA and MB on the SGI Octane | v2 |
Typedef Documentation
◆ and
using and = =========================================================================== V5.0.48 (Terra) 03/20/2015 Changes shown below are differences from MOD_PR02 V5.0.46 (Terra) ============================================================================ Changes noted for V6.1.20 (Terra) below were also instituted for this version. ============================================================================ V6.1.20 (Terra) 03/12/2015 Changes shown below are differences from MOD_PR02 V6.1.18 (Terra) ============================================================================ Changes from v6.1.18 which may affect scientific output: A situation can occur in which a scan which contains sector rotated data has a telemetry value indicating the completeness of the sector rotation. This issue is caused by the timing of the instrument command to perform the sector rotation and the recording of the telemetry point that reports the status of sector rotation. In this case a scan is considered valid by L1B and pass through the calibration - reporting extremely high radiances. Operationally the TEB calibration uses a 40 scan average coefficient, so the 20 scans (one mirror side) after the sector rotation are contaminated with anomalously high radiance values. A similar timing issue appeared before the sector rotation was fixed in V6.1.2. Our analysis indicates the ‘SET_FR_ENC_DELTA’ telemetry correlates well with the sector rotation encoder position. The use of this telemetry point to determine scans that are sector rotated should fix the anomaly occured before and after the sector rotation (usually due to the lunar roll maneuver). The fix related to the sector rotation in V6.1.2 is removed in this version. ============================================================================ V6.1.18 (Terra) 10/01/2014 Changes shown below are differences from MOD_PR02 V6.1.16 (Terra) ============================================================================ Added doi attributes to NRT (Near-Real-Time) product. ============================================================================ V6.1.16 (Terra) 01/27/2014 Changes shown below are differences from MOD_PR02 V6.1.14 (Terra) ============================================================================ Migrate to SDP Toolkit 5.2.17 ============================================================================ V6.1.14 (Terra) 06/26/2012 Changes shown below are differences from MOD_PR02 V6.1.12 (Terra) ============================================================================ Added the doi metadata to L1B product ============================================================================ V6.1.12 (Terra) 04/25/2011 Changes shown below are differences from MOD_PR02 V6.1.8 (Terra) ============================================================================ 1. The algorithm to calculate uncertainties for reflective solar bands (RSB) is updated. The current uncertainty in L1B code includes 9 terms from prelaunch analysis. The new algorithm regroups them with the new added contributions into 5 terms: u1: the common term (AOI and time independent) |
Definition at line 126 of file HISTORY.txt.
◆ code
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the code |
Definition at line 507 of file HISTORY.txt.
Function Documentation
◆ BDSM()
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned BDSM | ( | [NUM_REFLECTIVE_BANDS] *** | [MAX_DETECTORS_PER_BAND][MAX_SAMPLES_PER_BAND][NUM_MIRROR_SIDES] | ) |
◆ Box()
actual height is km The height is used only to determine whether the Moon is in the Space View Keep Out Box | ( | SV | KOB | ) |
◆ c()
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables c | ( | a direct print function in the | code | ) |
◆ calibrated()
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be calibrated | ( | i. | e., |
the BB DNs are not used as a backup for the SWIR | bands | ||
) |
◆ details()
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact details | ( | Other | changes | ) |
◆ even()
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in all MODIS Terra PGE02 code versions are even | ( | e.g. 4.2. | 0, |
5.6. | 8 | ||
) |
◆ File()
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in all MODIS Terra PGE02 code versions are The fourth digit of the PGE02 version denotes the LUT version used to produce the granule The source of the metadata environment variable ProcessingCenter was changed from a QA LUT value to the Process Configuration File | ( | PCF | ) |
◆ files()
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration files | ( | MCFs | ) |
◆ index()
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands replaced by more efficient code Other calculations throughout the code were also made more efficient Aside from a few round off there was no difference to the product The CPU time decreased by about for a day case and for a night case A minor bug in calculating the uncertainty index for emissive bands was corrected The frame index | ( | 0- | based | ) |
◆ inserted()
|
new |
◆ integer()
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled integer | ( | SI | ) |
◆ Number()
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a none of which changes the scientific it is treated as a missing granule and a warning message is printed The code now reads the MCST Version Number | ( | e.g. "3.0.1.0_Terra" | ) |
◆ scans()
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about scans | ( | one mirror | side | ) |
◆ table()
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT table | ( | e.g. | m1 | ) |
Variable Documentation
◆ __pad0__
u2 __pad0__ |
Definition at line 128 of file HISTORY.txt.
◆ __pad1__
u3 __pad1__ |
Definition at line 129 of file HISTORY.txt.
◆ __pad2__
u4 __pad2__ |
Definition at line 130 of file HISTORY.txt.
◆ __pad3__
u5 __pad3__ |
Definition at line 132 of file HISTORY.txt.
◆ __pad4__
PGE01 __pad4__ |
Definition at line 388 of file HISTORY.txt.
◆ __pad5__
PGE01 __pad5__ |
Definition at line 391 of file HISTORY.txt.
◆ __pad6__
PGE01 __pad6__ |
Definition at line 391 of file HISTORY.txt.
◆ algorithm
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old algorithm |
Definition at line 687 of file HISTORY.txt.
◆ April
Definition at line 4 of file HISTORY.txt.
◆ ASSOCIATEDSENSORSHORTNAME
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration ASSOCIATEDSENSORSHORTNAME |
Definition at line 708 of file HISTORY.txt.
◆ average
actual height is km The height is used only to determine whether the Moon is in the Space View Keep Out the SV data average |
Definition at line 419 of file HISTORY.txt.
◆ b1
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor b1 |
Definition at line 576 of file HISTORY.txt.
◆ Band
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for Band |
Definition at line 294 of file HISTORY.txt.
◆ bands
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR bands |
Definition at line 294 of file HISTORY.txt.
◆ BB_250m
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific BB_250m |
Definition at line 330 of file HISTORY.txt.
◆ below
see entries below |
Definition at line 233 of file HISTORY.txt.
◆ c
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess c |
Definition at line 555 of file HISTORY.txt.
◆ calibration
actual height is km The height is used only to determine whether the Moon is in the Space View Keep Out the SV data which is subtracted from Earth View data before calibration |
Definition at line 420 of file HISTORY.txt.
◆ case
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this case |
Definition at line 339 of file HISTORY.txt.
◆ change
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the change |
Definition at line 689 of file HISTORY.txt.
◆ computed
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be computed |
Definition at line 627 of file HISTORY.txt.
◆ Contact
******************************************** * HISTORY for MOD_PR02 TERRA* * Version * * * * Point of Contact |
Definition at line 56 of file HISTORY.txt.
◆ corrected
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a none of which changes the scientific it is treated as a missing granule and a warning message is printed The code now reads the MCST Version etc refer to the LUT versions A small bug in Preprocess c was corrected |
Definition at line 665 of file HISTORY.txt.
◆ correction
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments correction |
Definition at line 252 of file HISTORY.txt.
◆ creating
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips creating |
Definition at line 340 of file HISTORY.txt.
◆ Data
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT to fill pixels affected by dead subframes with a special value Output the metadata of noisy and dead subframe Dead Subframe EV Data |
Definition at line 223 of file HISTORY.txt.
◆ data
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV data |
Definition at line 340 of file HISTORY.txt.
◆ dependency
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector dependency |
Definition at line 288 of file HISTORY.txt.
◆ detector_quality_flag2_values_table
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT detector_quality_flag2_values_table |
Definition at line 220 of file HISTORY.txt.
◆ detectors
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT to fill pixels affected by dead subframes with a special value Output the metadata of noisy and dead subframe Dead Subframe EV and Detector Quality Flag2 Removed the function call of Fill_Dead_Detector_SI to stop interpolating SI values for dead detectors |
Definition at line 227 of file HISTORY.txt.
◆ differences
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands replaced by more efficient code Other calculations throughout the code were also made more efficient Aside from a few round off differences |
Definition at line 719 of file HISTORY.txt.
◆ direction
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track direction |
Definition at line 269 of file HISTORY.txt.
◆ DNs
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body DNs |
Definition at line 688 of file HISTORY.txt.
◆ documents
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification documents |
Definition at line 712 of file HISTORY.txt.
◆ file
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV file |
Definition at line 343 of file HISTORY.txt.
◆ files
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF files |
Definition at line 351 of file HISTORY.txt.
◆ flags
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf which is Bit in the scan by scan bit QA flags |
Definition at line 357 of file HISTORY.txt.
◆ functioning
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non functioning |
Definition at line 289 of file HISTORY.txt.
◆ granules
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing granules |
Definition at line 584 of file HISTORY.txt.
◆ inaccurate
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are inaccurate |
Definition at line 183 of file HISTORY.txt.
◆ interpreted
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly interpreted |
Definition at line 268 of file HISTORY.txt.
◆ keywords
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS keywords |
Definition at line 274 of file HISTORY.txt.
◆ L1A
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in L1A |
Definition at line 314 of file HISTORY.txt.
◆ late
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in late |
Definition at line 395 of file HISTORY.txt.
◆ lists
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT to fill pixels affected by dead subframes with a special value Output the metadata of noisy and dead subframe lists |
Definition at line 222 of file HISTORY.txt.
◆ made
Definition at line 670 of file HISTORY.txt.
◆ March
PGE01 indicating that PGE02 PGE01 V6 for and PGE01 V2 for MOD03 were used to produce the granule By convention adopted in all MODIS Terra PGE02 code versions are The fourth digit of the PGE02 version denotes the LUT version used to produce the granule The source of the metadata environment variable ProcessingCenter was changed from a QA LUT value to the Process Configuration March |
Definition at line 411 of file HISTORY.txt.
◆ message
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a message |
Definition at line 644 of file HISTORY.txt.
◆ MOD01
Definition at line 392 of file HISTORY.txt.
◆ now
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf which is Bit in the scan by scan bit QA has been changed Until now |
Definition at line 357 of file HISTORY.txt.
◆ NUM_REFLECTIVE_INDICES
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where NUM_REFLECTIVE_INDICES |
Definition at line 539 of file HISTORY.txt.
◆ of
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning of |
Definition at line 348 of file HISTORY.txt.
◆ once
Definition at line 417 of file HISTORY.txt.
◆ opening
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips opening |
Definition at line 340 of file HISTORY.txt.
◆ output
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not but will print a none of which changes the scientific output |
Definition at line 181 of file HISTORY.txt.
◆ personnel
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf which is Bit in the scan by scan bit QA has been changed Until Level has set the maneuver bit flag on a scan by scan basis by keying on the SS_FR_SCIABNORM flag passed to Level by the Level telemetry data This flag is manually set by Flight Operations personnel |
Definition at line 360 of file HISTORY.txt.
◆ PGE02
Definition at line 391 of file HISTORY.txt.
◆ preprocessing
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands preprocessing |
Definition at line 717 of file HISTORY.txt.
◆ Previously
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF Previously |
Definition at line 679 of file HISTORY.txt.
◆ production
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production |
Definition at line 57 of file HISTORY.txt.
◆ purpose
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any purpose |
Definition at line 560 of file HISTORY.txt.
◆ result
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a result |
Definition at line 183 of file HISTORY.txt.
◆ rotation
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector rotation |
Definition at line 575 of file HISTORY.txt.
◆ SAMPLES_PER_1KM_BAND
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and SAMPLES_PER_1KM_BAND |
Definition at line 548 of file HISTORY.txt.
◆ SAMPLES_PER_500M_BAND
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where SAMPLES_PER_500M_BAND = 2 |
Definition at line 547 of file HISTORY.txt.
◆ SD_500m
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific SD_500m |
Definition at line 330 of file HISTORY.txt.
◆ SI
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding SI |
Definition at line 595 of file HISTORY.txt.
◆ specified
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag and the number of pixels for which this occurs is counted in the QA_common table The array of b1s in Preprocess c was being initialized to outside the loop over which meant that if b1 could not be the value of b1 from the previous band for that scan detector combination was used The initialization was moved inside the band loop Minor code changes were made to eliminate compiler warnings when the code is compiled in bit mode Temperature equations were upgraded to be MODIS AQUA or MODIS TERRA specific and temperature conversion coefficients for AQUA were MOD_PR02 will not cease execution if the value of this parameter is not specified |
Definition at line 641 of file HISTORY.txt.
◆ SRCA_250m
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific SRCA_250m |
Definition at line 329 of file HISTORY.txt.
◆ SRCA_500m
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific SRCA_500m |
Definition at line 330 of file HISTORY.txt.
◆ SV_250m
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific SV_250m |
Definition at line 329 of file HISTORY.txt.
◆ SV_500m
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific SV_500m |
Definition at line 330 of file HISTORY.txt.
◆ tables
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of tables |
Definition at line 700 of file HISTORY.txt.
◆ TEB_B1_NOT_CALCULATED
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag TEB_B1_NOT_CALCULATED |
Definition at line 623 of file HISTORY.txt.
◆ to
see entries to conform to MODIS requirements Removed the ScanType of Mixed from the code Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to distinguish the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata to |
Definition at line 332 of file HISTORY.txt.
◆ Uncertainty
u5 Uncertainty |
Definition at line 133 of file HISTORY.txt.
◆ v2
an array had not been initialized Several spelling and grammar corrections were which is read from the appropriate MCF the above metadata values were hard coded A problem calculating the average background DN for SWIR bands when the moon is in the space view port was corrected The new algorithm used to calculate the average background DN for all reflective bands when the moon is in the space view port is now the same as the algorithm employed by the thermal bands For non SWIR changes in the averages are typically less than Also for non SWIR the black body DNs remain a backup in case the SV DNs are not available For SWIR the changes in computed averages were larger because the old which used the black body suffered from contamination by the micron leak As a consequence of the if SV DNs are not available for the SWIR the EV pixels will not be the granule time is used to identify the appropriate tables within the set given for one LUT the first two or last two tables respectively will be used for the interpolation If there is only one LUT in the set of it will be treated as a constant LUT The manner in which Earth View data is checked for saturation was changed Previously the raw Earth View DNs and Space View DNs were checked against the lookup table values contained in the table dn_sat The change made is to check the raw Earth and Space View DNs to be sure they are less than the maximum saturation value and to check the Space View subtracted Earth View dns against a set of values contained in the new lookup table dn_sat_ev The metadata configuration and ASSOCIATEDINSTRUMENTSHORTNAME from the MOD02HKM product The same metatdata with extensions and were removed from the MOD021KM and MOD02OBC products ASSOCIATEDSENSORSHORTNAME was set to MODIS in all products These changes are reflected in new File Specification which users may consult for exact the pow functions were eliminated in Emissive_Cal and Emissive bands replaced by more efficient code Other calculations throughout the code were also made more efficient Aside from a few round off there was no difference to the product The CPU time decreased by about for a day case and for a night case A minor bug in calculating the uncertainty index for emissive bands was corrected The frame the required RAM for each execution is MB on the DEC ALPHA and MB on the SGI Octane v2 |
Definition at line 733 of file HISTORY.txt.
◆ V6
u5 which has been done in V6 |
Definition at line 161 of file HISTORY.txt.
◆ value
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of were added to make it LINUX compatible Output of code run on LINUX machines displays differences of at most scaled sector incalculable values of the Emissive calibration factor and incalculable values of SV or BB averages was moved outside the loop over frames in Emissive_Cal c since none of these quantities are frame dependent Initialization of b1 and XMS values in Preprocess c routine Process_OBCENG_Emiss was moved inside the detector loops The code was altered so that if up to five scans are dropped between the leading middle or middle trailing the leading or trailing granule will still be used in emissive calibration to form a cross granule average QA bits and are set for a gap between the leading middle and middle trailing granules respectively This may in rare instances lead to a change in emissive calibration coefficients for scans at the beginning or end of a granule A small bug in the Band correction algorithm was corrected an uncertainty value was being checked against an upper bound whereas the proper quantity to be checked was the corresponding which is the product of the Band radiance times the ratio of the Band to Band scaling factors times the LUT correction value for that detector In addition a new LUT which allows for a frame offset with regard to the Band radiance was added A LUT which switches the correction off or on was also added Changes which do not affect scientific output of the the pixel is flagged with the newly created flag value |
Definition at line 623 of file HISTORY.txt.
◆ variables
instead the metadata field ProcessingEnvinronment is filled in from the output of a call to the POSIX compliant function uname from within the L1B code A small bug in L1B_Tables an incorrect comparison of RVS coefficients for TEBs to RVS coefficients for RSBs was being made This was replaced with a comparison between TEB coefficients This error never resulted in an incorrect RVS correction but did lead to recalculating the coefficients for each detector in a thermal band even if the coefficients were the same for all detectors To reduce to overall size of the reflective LUT HDF fill values were eliminated from all LUTs previously dimensioned where and where NUM_TIMES is the number of time dependent table pieces In Preprocess a small error where the trailing dropped scan counter was incremented when the leading dropped scan counter should have been was fixed This counter is internal only and is not yet used for any chiefly to casting of variables |
Definition at line 570 of file HISTORY.txt.
◆ Version
PGE01 indicating that PGE02 Version |
Definition at line 392 of file HISTORY.txt.