OB.DAAC Logo
NASA Logo
Ocean Color Science Software

ocssw V2022
extem101_64.f
Go to the documentation of this file.
1  subroutine extem101_64(tt,slat)
2 c * extrapolate temperature profile up to 0.005 mb
3 c .... version of 24.04.02
4 
5 c input:
6 c tt = top-down 101-level temperature profile with -1. at missing upper levels
7 c slat = latitude(deg,+n,-s)
8 c output:
9 c tt = same profile with missing levels filled in
10 
11  implicit real*8 (a-h,o-z)
12 
13  parameter(nx=9,ny=35,nz=3)
14  dimension tt(*),tx(nx),lx(nx),cc(nz,0:nx,ny),plat(nz),cfl(0:nx)
15  common/extcoeff_64/coef(0:nx,ny,nz)
16  data init/1/,lx/36,40,45,51,56,64,70,76,86/
17  data x1/75./,x2/45./,x3/15./
18 
19  save
20 
21  if(init.ne.0) then
22  do j=1,ny
23  do i=0,nx
24  y1=coef(i,j,1)
25  y2=coef(i,j,2)
26  y3=coef(i,j,3)
27  call cofit3_64(x1,x2,x3,y1,y2,y3,c1,c2,c3)
28  cc(1,i,j)=c1
29  cc(2,i,j)=c2
30  cc(3,i,j)=c3
31  enddo
32  enddo
33  init=0
34  endif
35 
36  alat=abs(slat)
37  xx=1.
38  do k=1,nz
39  plat(k)=xx
40  xx=xx*alat
41  enddo
42 
43 c * load the predictor array
44  do i=1,nx
45  l=lx(i)
46  tx(i)=tt(l)
47  enddo
48 
49  do j=1,ny
50  if(tt(j).gt.0.) return
51  do i=0,nx
52  cy=0.
53  do k=1,nz
54  cy=cy+cc(k,i,j)*plat(k)
55  enddo
56  cfl(i)=cy
57  enddo
58  sum=cfl(0)
59  do i=1,nx
60  sum=sum+cfl(i)*tx(i)
61  enddo
62  tt(j)=sum
63  enddo
64 
65  return
66  end
67 
68  block data extrap_coeffs_64
69  parameter(nx=9,ny=35,nz=3)
70  real*8 coef(0:nx,ny,nz)
71  common/extcoeff_64/coef
72 
73 c * temperature-extrapolation coefficients ...
74 c derived from nesdis prof1200
75 
76 c +++ zone 1
77 
78 c * 0.0050 mb:
79  data (coef(i, 1,1),i=0,nx)/
80  + 768.137268, -0.294463, -1.938120, 1.445014, 1.010484,
81  + -1.501080, -0.333852, -0.460916, -0.289109, -0.185883/
82 c * 0.0161 mb:
83  data (coef(i, 2,1),i=0,nx)/
84  + 729.598755, -0.048072, -2.192048, 1.556883, 1.041545,
85  + -1.527906, -0.179924, -0.397472, -0.527085, -0.022882/
86 c * 0.0384 mb:
87  data (coef(i, 3,1),i=0,nx)/
88  + 580.007996, 0.256773, -1.953103, 1.262224, 0.855626,
89  + -1.226672, 0.021504, -0.272799, -0.672050, 0.167226/
90 c * 0.0769 mb:
91  data (coef(i, 4,1),i=0,nx)/
92  + 378.418610, 0.481383, -1.547368, 0.949718, 0.557970,
93  + -0.797499, 0.236666, -0.090441, -0.724859, 0.324352/
94 c * 0.1370 mb:
95  data (coef(i, 5,1),i=0,nx)/
96  + 227.726013, 0.399807, -0.767517, 0.339597, 0.334890,
97  + -0.304244, 0.242581, 0.200534, -0.710240, 0.359780/
98 c * 0.2244 mb:
99  data (coef(i, 6,1),i=0,nx)/
100  + 131.540237, 0.116343, 0.181285, -0.404714, 0.194162,
101  + 0.168128, 0.112673, 0.505991, -0.649249, 0.319506/
102 c * 0.3454 mb:
103  data (coef(i, 7,1),i=0,nx)/
104  + 36.948456, -0.219132, 1.068293, -1.006580, 0.041164,
105  + 0.596757, 0.016176, 0.724429, -0.524707, 0.280223/
106 c * 0.5064 mb:
107  data (coef(i, 8,1),i=0,nx)/
108  + -47.064129, -0.502069, 1.832718, -1.521932, -0.102700,
109  + 0.973025, -0.065917, 0.916755, -0.417642, 0.247873/
110 c * 0.7140 mb:
111  data (coef(i, 9,1),i=0,nx)/
112  + -125.058113, -0.371252, 1.929798, -1.497271, -0.445293,
113  + 1.206479, -0.047493, 1.051199, -0.411198, 0.284401/
114 c * 0.9753 mb:
115  data (coef(i,10,1),i=0,nx)/
116  + -195.826279, -0.252554, 2.017885, -1.474895, -0.756146,
117  + 1.418304, -0.030777, 1.173188, -0.405352, 0.317545/
118 c * 1.2972 mb:
119  data (coef(i,11,1),i=0,nx)/
120  + -211.840836, -0.087453, 1.892584, -1.498378, -0.888045,
121  + 1.557249, -0.013888, 1.153322, -0.274422, 0.228628/
122 c * 1.6872 mb:
123  data (coef(i,12,1),i=0,nx)/
124  + -222.487411, 0.077679, 1.743851, -1.517234, -0.992018,
125  + 1.676924, 0.003067, 1.119941, -0.144600, 0.140581/
126 c * 2.1526 mb:
127  data (coef(i,13,1),i=0,nx)/
128  + -220.345123, 0.284957, 1.478203, -1.409153, -1.098716,
129  + 1.732799, 0.005315, 1.062679, -0.051710, 0.083439/
130 c * 2.7009 mb:
131  data (coef(i,14,1),i=0,nx)/
132  + -191.945847, 0.575167, 0.992410, -1.054349, -1.230327,
133  + 1.674808, -0.024700, 0.961055, -0.019512, 0.071966/
134 c * 3.3398 mb:
135  data (coef(i,15,1),i=0,nx)/
136  + -163.447739, 0.789576, 0.662758, -0.848763, -1.165136,
137  + 1.486376, -0.005209, 0.856173, 0.036504, 0.000516/
138 c * 4.0770 mb:
139  data (coef(i,16,1),i=0,nx)/
140  + -135.140701, 0.938526, 0.466544, -0.770585, -0.932123,
141  + 1.188257, 0.055934, 0.750415, 0.112469, -0.122608/
142 c * 4.9204 mb:
143  data (coef(i,17,1),i=0,nx)/
144  + -110.534798, 1.079643, 0.269122, -0.685459, -0.724919,
145  + 0.927309, 0.105440, 0.666502, 0.180002, -0.240317/
146 c * 5.8776 mb:
147  data (coef(i,18,1),i=0,nx)/
148  + -86.496407, 1.197924, 0.180591, -0.680802, -0.560434,
149  + 0.725634, 0.114811, 0.524036, 0.254776, -0.292023/
150 c * 6.9567 mb:
151  data (coef(i,19,1),i=0,nx)/
152  + -63.631668, 1.308646, 0.105890, -0.683525, -0.407437,
153  + 0.538658, 0.120171, 0.383015, 0.326700, -0.335437/
154 c * 8.1655 mb:
155  data (coef(i,20,1),i=0,nx)/
156  + -53.883522, 1.446655, -0.084576, -0.584522, -0.321630,
157  + 0.418490, 0.138251, 0.323507, 0.266197, -0.297677/
158 c * 9.5119 mb:
159  data (coef(i,21,1),i=0,nx)/
160  + -45.056870, 1.579389, -0.270613, -0.486306, -0.242174,
161  + 0.306220, 0.155973, 0.269677, 0.203612, -0.258671/
162 c * 11.0038 mb:
163  data (coef(i,22,1),i=0,nx)/
164  + -37.774498, 1.605633, -0.336989, -0.423904, -0.179642,
165  + 0.233162, 0.156346, 0.226620, 0.162179, -0.225690/
166 c * 12.6492 mb:
167  data (coef(i,23,1),i=0,nx)/
168  + -31.381693, 1.580467, -0.344828, -0.379910, -0.126498,
169  + 0.180357, 0.148424, 0.189608, 0.131713, -0.196274/
170 c * 14.4559 mb:
171  data (coef(i,24,1),i=0,nx)/
172  + -25.256893, 1.556356, -0.352337, -0.337762, -0.075582,
173  + 0.129767, 0.140834, 0.154147, 0.102526, -0.168092/
174 c * 16.4318 mb:
175  data (coef(i,25,1),i=0,nx)/
176  + -19.332832, 1.532327, -0.358523, -0.296751, -0.023514,
177  + 0.076359, 0.135129, 0.118184, 0.075598, -0.141048/
178 c * 18.5847 mb:
179  data (coef(i,26,1),i=0,nx)/
180  + -13.621389, 1.508887, -0.364070, -0.257120, 0.027774,
181  + 0.023140, 0.130262, 0.082869, 0.050141, -0.115058/
182 c * 20.9224 mb:
183  data (coef(i,27,1),i=0,nx)/
184  + -10.552977, 1.475920, -0.355611, -0.209939, 0.047681,
185  + -0.006736, 0.119757, 0.072153, 0.024709, -0.098524/
186 c * 23.4526 mb:
187  data (coef(i,28,1),i=0,nx)/
188  + -11.404002, 1.427825, -0.325822, -0.150293, 0.020678,
189  + -0.002060, 0.100506, 0.098321, -0.001260, -0.095886/
190 c * 26.1829 mb:
191  data (coef(i,29,1),i=0,nx)/
192  + -12.431881, 1.380402, -0.295441, -0.093749, -0.004390,
193  + 0.002642, 0.081415, 0.123695, -0.026677, -0.092560/
194 c * 29.1210 mb:
195  data (coef(i,30,1),i=0,nx)/
196  + -13.700622, 1.333231, -0.263907, -0.040468, -0.027290,
197  + 0.007437, 0.062283, 0.148370, -0.051712, -0.088305/
198 c * 32.2744 mb:
199  data (coef(i,31,1),i=0,nx)/
200  + -12.049180, 1.288188, -0.233483, -0.020884, -0.028961,
201  + 0.007528, 0.048806, 0.133084, -0.050300, -0.074679/
202 c * 35.6505 mb:
203  data (coef(i,32,1),i=0,nx)/
204  + -9.317835, 1.244821, -0.204065, -0.014504, -0.022521,
205  + 0.005827, 0.037740, 0.102881, -0.038848, -0.057748/
206 c * 39.2566 mb:
207  data (coef(i,33,1),i=0,nx)/
208  + -6.672400, 1.202820, -0.175573, -0.008325, -0.016283,
209  + 0.004179, 0.027023, 0.073628, -0.027756, -0.041350/
210 c * 43.1001 mb:
211  data (coef(i,34,1),i=0,nx)/
212  + -4.107985, 1.162105, -0.147954, -0.002335, -0.010237,
213  + 0.002583, 0.016633, 0.045271, -0.017004, -0.025454/
214 c * 47.1882 mb:
215  data (coef(i,35,1),i=0,nx)/
216  + -1.620239, 1.122606, -0.121160, 0.003476, -0.004369,
217  + 0.001033, 0.006554, 0.017761, -0.006572, -0.010032/
218 
219 c +++ zone 2
220 
221 c * 0.0050 mb:
222  data (coef(i, 1,2),i=0,nx)/
223  + 834.861145, -0.395518, -0.168292, -0.522989, 0.135368,
224  + -0.648098, -0.120294, -0.432757, -0.616573, -0.049551/
225 c * 0.0161 mb:
226  data (coef(i, 2,2),i=0,nx)/
227  + 706.697998, -0.564473, 0.061239, -0.490616, 0.279786,
228  + -0.515674, -0.074882, -0.145787, -0.887622, 0.150642/
229 c * 0.0384 mb:
230  data (coef(i, 3,2),i=0,nx)/
231  + 456.640137, -0.515665, 0.238243, -0.325252, 0.306180,
232  + -0.235547, -0.028916, 0.203108, -0.970324, 0.303589/
233 c * 0.0769 mb:
234  data (coef(i, 4,2),i=0,nx)/
235  + 196.650543, -0.580368, 0.469164, -0.167309, 0.389823,
236  + 0.028119, 0.028069, 0.512286, -0.967577, 0.455387/
237 c * 0.1370 mb:
238  data (coef(i, 5,2),i=0,nx)/
239  + 55.473385, -0.577106, 0.510232, -0.037092, 0.481069,
240  + 0.095268, 0.059780, 0.602277, -0.792924, 0.480604/
241 c * 0.2244 mb:
242  data (coef(i, 6,2),i=0,nx)/
243  + 3.620781, -0.523341, 0.420839, 0.076334, 0.556607,
244  + 0.033327, 0.063618, 0.596428, -0.589134, 0.438588/
245 c * 0.3454 mb:
246  data (coef(i, 7,2),i=0,nx)/
247  + -45.342590, -0.570448, 0.387072, 0.196123, 0.643398,
248  + -0.025933, 0.053534, 0.719213, -0.558915, 0.459968/
249 c * 0.5064 mb:
250  data (coef(i, 8,2),i=0,nx)/
251  + -88.503006, -0.608382, 0.353316, 0.301524, 0.715639,
252  + -0.073664, 0.042024, 0.832244, -0.535806, 0.479966/
253 c * 0.7140 mb:
254  data (coef(i, 9,2),i=0,nx)/
255  + -120.005302, -0.541255, 0.223263, 0.373417, 0.655807,
256  + 0.010448, -0.035588, 1.041446, -0.612080, 0.524942/
257 c * 0.9753 mb:
258  data (coef(i,10,2),i=0,nx)/
259  + -148.589035, -0.480346, 0.105258, 0.438649, 0.601519,
260  + 0.086768, -0.106009, 1.231265, -0.681287, 0.565751/
261 c * 1.2972 mb:
262  data (coef(i,11,2),i=0,nx)/
263  + -161.973740, -0.371849, 0.008552, 0.486533, 0.557450,
264  + 0.112235, -0.175632, 1.253408, -0.627670, 0.561722/
265 c * 1.6872 mb:
266  data (coef(i,12,2),i=0,nx)/
267  + -173.125641, -0.266075, -0.083040, 0.532244, 0.515987,
268  + 0.132649, -0.241772, 1.260636, -0.568181, 0.555640/
269 c * 2.1526 mb:
270  data (coef(i,13,2),i=0,nx)/
271  + -173.081696, -0.094634, -0.220959, 0.567489, 0.477990,
272  + 0.120870, -0.283719, 1.244042, -0.533282, 0.546141/
273 c * 2.7009 mb:
274  data (coef(i,14,2),i=0,nx)/
275  + -150.789734, 0.220479, -0.455112, 0.578471, 0.446871,
276  + 0.041562, -0.277308, 1.177748, -0.543711, 0.525773/
277 c * 3.3398 mb:
278  data (coef(i,15,2),i=0,nx)/
279  + -130.673721, 0.435536, -0.553035, 0.536432, 0.402999,
280  + -0.011230, -0.249925, 1.061322, -0.498618, 0.491557/
281 c * 4.0770 mb:
282  data (coef(i,16,2),i=0,nx)/
283  + -112.541351, 0.564179, -0.533735, 0.448692, 0.348486,
284  + -0.040873, -0.204408, 0.902095, -0.405841, 0.445350/
285 c * 4.9204 mb:
286  data (coef(i,17,2),i=0,nx)/
287  + -96.168854, 0.685395, -0.516674, 0.364636, 0.299450,
288  + -0.066547, -0.160329, 0.753376, -0.318513, 0.400629/
289 c * 5.8776 mb:
290  data (coef(i,18,2),i=0,nx)/
291  + -121.107452, 0.789144, -0.466781, 0.308981, 0.265531,
292  + -0.041420, -0.096691, 0.627374, -0.172447, 0.330783/
293 c * 6.9567 mb:
294  data (coef(i,19,2),i=0,nx)/
295  + -148.557831, 0.886490, -0.416297, 0.258454, 0.234542,
296  + -0.012946, -0.034285, 0.509281, -0.027978, 0.261965/
297 c * 8.1655 mb:
298  data (coef(i,20,2),i=0,nx)/
299  + -146.946228, 0.924881, -0.351371, 0.173360, 0.243558,
300  + -0.023024, -0.043987, 0.511167, -0.028737, 0.240058/
301 c * 9.5119 mb:
302  data (coef(i,21,2),i=0,nx)/
303  + -144.347504, 0.959377, -0.288869, 0.090871, 0.253623,
304  + -0.034051, -0.055879, 0.517345, -0.034760, 0.220859/
305 c * 11.0038 mb:
306  data (coef(i,22,2),i=0,nx)/
307  + -136.725281, 0.967216, -0.250049, 0.038883, 0.268749,
308  + -0.045579, -0.034804, 0.465370, -0.010830, 0.193404/
309 c * 12.6492 mb:
310  data (coef(i,23,2),i=0,nx)/
311  + -126.862816, 0.962160, -0.223352, 0.002548, 0.285976,
312  + -0.057106, 0.001579, 0.386704, 0.026907, 0.162579/
313 c * 14.4559 mb:
314  data (coef(i,24,2),i=0,nx)/
315  + -117.413834, 0.957316, -0.197774, -0.032263, 0.302480,
316  + -0.068150, 0.036436, 0.311337, 0.063062, 0.133046/
317 c * 16.4318 mb:
318  data (coef(i,25,2),i=0,nx)/
319  + -108.387199, 0.951026, -0.170067, -0.067915, 0.319109,
320  + -0.079884, 0.071843, 0.243068, 0.098536, 0.099678/
321 c * 18.5847 mb:
322  data (coef(i,26,2),i=0,nx)/
323  + -99.728241, 0.944342, -0.142208, -0.103052, 0.335396,
324  + -0.091603, 0.106632, 0.179040, 0.132930, 0.065653/
325 c * 20.9224 mb:
326  data (coef(i,27,2),i=0,nx)/
327  + -90.187675, 0.953354, -0.131290, -0.116374, 0.326715,
328  + -0.094256, 0.128964, 0.132450, 0.141525, 0.044614/
329 c * 23.4526 mb:
330  data (coef(i,28,2),i=0,nx)/
331  + -79.100502, 0.986260, -0.145695, -0.097073, 0.280154,
332  + -0.083285, 0.132998, 0.111127, 0.111379, 0.042697/
333 c * 26.1829 mb:
334  data (coef(i,29,2),i=0,nx)/
335  + -68.699837, 1.017853, -0.157891, -0.083327, 0.241075,
336  + -0.074152, 0.137479, 0.089334, 0.082811, 0.041165/
337 c * 29.1210 mb:
338  data (coef(i,30,2),i=0,nx)/
339  + -59.048897, 1.048161, -0.167399, -0.076558, 0.211126,
340  + -0.067266, 0.142594, 0.066655, 0.055907, 0.040111/
341 c * 32.2744 mb:
342  data (coef(i,31,2),i=0,nx)/
343  + -48.262180, 1.062744, -0.160901, -0.062914, 0.173613,
344  + -0.056035, 0.123367, 0.051704, 0.041447, 0.034117/
345 c * 35.6505 mb:
346  data (coef(i,32,2),i=0,nx)/
347  + -37.250641, 1.071060, -0.148434, -0.046917, 0.133942,
348  + -0.043364, 0.095243, 0.039982, 0.032004, 0.026359/
349 c * 39.2566 mb:
350  data (coef(i,33,2),i=0,nx)/
351  + -26.585524, 1.079114, -0.136360, -0.031422, 0.095519,
352  + -0.031093, 0.068005, 0.028629, 0.022858, 0.018845/
353 c * 43.1001 mb:
354  data (coef(i,34,2),i=0,nx)/
355  + -16.247211, 1.086921, -0.124655, -0.016402, 0.058273,
356  + -0.019197, 0.041600, 0.017624, 0.013991, 0.011561/
357 c * 47.1882 mb:
358  data (coef(i,35,2),i=0,nx)/
359  + -6.217585, 1.094496, -0.113301, -0.001831, 0.022139,
360  + -0.007657, 0.015985, 0.006947, 0.005390, 0.004494/
361 
362 c +++ zone 3
363 
364 c * 0.0050 mb:
365  data (coef(i, 1,3),i=0,nx)/
366  + 253.099335, -0.059435, -0.113692, -0.076584, 0.018085,
367  + 0.109696, -0.245047, 0.207798, -0.158821, -0.005658/
368 c * 0.0161 mb:
369  data (coef(i, 2,3),i=0,nx)/
370  + 393.724976, -0.159516, -0.305137, -0.205541, 0.048536,
371  + 0.294412, -0.657678, 0.557706, -0.426257, -0.015186/
372 c * 0.0384 mb:
373  data (coef(i, 3,3),i=0,nx)/
374  + 488.316467, -0.220589, -0.421964, -0.284236, 0.067118,
375  + 0.407132, -0.909481, 0.771234, -0.589456, -0.021001/
376 c * 0.0769 mb:
377  data (coef(i, 4,3),i=0,nx)/
378  + 571.788940, -0.274628, -0.525335, -0.353867, 0.083561,
379  + 0.506871, -1.132283, 0.960168, -0.733859, -0.026146/
380 c * 0.1370 mb:
381  data (coef(i, 5,3),i=0,nx)/
382  + 564.131775, -0.280373, -0.502551, -0.299793, 0.065189,
383  + 0.444018, -1.027926, 0.888957, -0.690901, -0.011248/
384 c * 0.2244 mb:
385  data (coef(i, 6,3),i=0,nx)/
386  + 496.362030, -0.249809, -0.394284, -0.179865, 0.027459,
387  + 0.290057, -0.717002, 0.634090, -0.503432, 0.004950/
388 c * 0.3454 mb:
389  data (coef(i, 7,3),i=0,nx)/
390  + 432.359314, -0.211118, -0.286078, -0.105599, -0.000052,
391  + 0.184573, -0.442425, 0.356257, -0.266806, -0.011249/
392 c * 0.5064 mb:
393  data (coef(i, 8,3),i=0,nx)/
394  + 375.968506, -0.173903, -0.194453, -0.041546, -0.020229,
395  + 0.090298, -0.207287, 0.122826, -0.062737, -0.026678/
396 c * 0.7140 mb:
397  data (coef(i, 9,3),i=0,nx)/
398  + 335.498596, -0.064613, -0.226756, -0.032027, 0.072557,
399  + -0.012652, -0.217699, 0.255347, -0.032882, -0.068283/
400 c * 0.9753 mb:
401  data (coef(i,10,3),i=0,nx)/
402  + 298.778290, 0.034553, -0.256067, -0.023391, 0.156749,
403  + -0.106065, -0.227148, 0.375591, -0.005793, -0.106034/
404 c * 1.2972 mb:
405  data (coef(i,11,3),i=0,nx)/
406  + 320.508484, 0.055737, -0.215899, -0.126142, 0.126488,
407  + -0.119170, -0.163850, 0.312299, 0.057370, -0.183508/
408 c * 1.6872 mb:
409  data (coef(i,12,3),i=0,nx)/
410  + 338.109192, 0.077756, -0.167569, -0.228182, 0.081726,
411  + -0.109376, -0.114042, 0.249524, 0.124284, -0.253638/
412 c * 2.1526 mb:
413  data (coef(i,13,3),i=0,nx)/
414  + 330.158142, 0.125628, -0.127452, -0.284897, 0.018188,
415  + -0.073173, -0.058458, 0.164222, 0.202521, -0.283837/
416 c * 2.7009 mb:
417  data (coef(i,14,3),i=0,nx)/
418  + 288.525238, 0.208034, -0.113437, -0.262148, -0.070341,
419  + -0.019104, 0.050349, -0.000575, 0.297252, -0.249445/
420 c * 3.3398 mb:
421  data (coef(i,15,3),i=0,nx)/
422  + 247.402054, 0.288580, -0.105926, -0.234689, -0.143902,
423  + 0.044019, 0.059252, -0.048267, 0.325860, -0.189348/
424 c * 4.0770 mb:
425  data (coef(i,16,3),i=0,nx)/
426  + 207.174408, 0.365898, -0.103597, -0.202744, -0.204937,
427  + 0.116567, -0.020110, 0.001814, 0.300148, -0.106910/
428 c * 4.9204 mb:
429  data (coef(i,17,3),i=0,nx)/
430  + 172.771362, 0.425351, -0.097642, -0.168375, -0.266588,
431  + 0.200371, -0.115398, 0.021846, 0.299176, -0.026388/
432 c * 5.8776 mb:
433  data (coef(i,18,3),i=0,nx)/
434  + 170.819962, 0.377608, 0.003744, -0.188331, -0.277131,
435  + 0.162590, -0.022318, -0.064583, 0.305203, -0.023369/
436 c * 6.9567 mb:
437  data (coef(i,19,3),i=0,nx)/
438  + 171.848145, 0.322555, 0.108887, -0.212190, -0.282633,
439  + 0.115752, 0.083180, -0.156449, 0.311570, -0.027389/
440 c * 8.1655 mb:
441  data (coef(i,20,3),i=0,nx)/
442  + 178.900009, 0.317759, 0.072287, -0.147714, -0.288088,
443  + 0.079424, 0.109033, -0.207073, 0.293082, -0.003934/
444 c * 9.5119 mb:
445  data (coef(i,21,3),i=0,nx)/
446  + 185.850937, 0.315015, 0.032178, -0.082944, -0.293293,
447  + 0.045129, 0.130805, -0.253892, 0.274527, 0.019458/
448 c * 11.0038 mb:
449  data (coef(i,22,3),i=0,nx)/
450  + 181.033875, 0.342789, -0.008198, -0.050784, -0.276437,
451  + 0.028043, 0.139765, -0.267162, 0.249229, 0.043197/
452 c * 12.6492 mb:
453  data (coef(i,23,3),i=0,nx)/
454  + 170.696304, 0.384559, -0.047857, -0.034871, -0.249395,
455  + 0.019533, 0.142417, -0.264131, 0.221237, 0.066608/
456 c * 14.4559 mb:
457  data (coef(i,24,3),i=0,nx)/
458  + 160.792282, 0.424578, -0.085853, -0.019626, -0.223487,
459  + 0.011380, 0.144958, -0.261227, 0.194418, 0.089037/
460 c * 16.4318 mb:
461  data (coef(i,25,3),i=0,nx)/
462  + 150.499008, 0.461093, -0.122477, -0.003129, -0.196627,
463  + 0.000506, 0.147210, -0.251144, 0.167289, 0.109366/
464 c * 18.5847 mb:
465  data (coef(i,26,3),i=0,nx)/
466  + 140.299698, 0.495449, -0.157735, 0.013451, -0.170036,
467  + -0.011132, 0.149301, -0.238611, 0.140674, 0.128437/
468 c * 20.9224 mb:
469  data (coef(i,27,3),i=0,nx)/
470  + 133.652267, 0.528523, -0.174538, 0.028105, -0.154952,
471  + -0.021779, 0.150992, -0.227335, 0.124328, 0.123706/
472 c * 23.4526 mb:
473  data (coef(i,28,3),i=0,nx)/
474  + 132.214737, 0.560411, -0.163866, 0.040182, -0.156891,
475  + -0.031171, 0.152119, -0.217697, 0.123112, 0.082945/
476 c * 26.1829 mb:
477  data (coef(i,29,3),i=0,nx)/
478  + 130.282120, 0.591975, -0.157004, 0.055184, -0.159140,
479  + -0.038202, 0.157241, -0.213196, 0.124561, 0.042131/
480 c * 29.1210 mb:
481  data (coef(i,30,3),i=0,nx)/
482  + 127.686752, 0.623526, -0.154959, 0.074146, -0.161817,
483  + -0.042282, 0.167575, -0.215254, 0.129460, 0.000725/
484 c * 32.2744 mb:
485  data (coef(i,31,3),i=0,nx)/
486  + 108.781189, 0.698895, -0.147134, 0.068980, -0.139383,
487  + -0.037117, 0.145935, -0.184685, 0.111908, -0.009194/
488 c * 35.6505 mb:
489  data (coef(i,32,3),i=0,nx)/
490  + 84.030518, 0.789494, -0.137261, 0.054729, -0.107821,
491  + -0.028531, 0.112540, -0.142284, 0.086147, -0.006936/
492 c * 39.2566 mb:
493  data (coef(i,33,3),i=0,nx)/
494  + 60.058582, 0.877243, -0.127698, 0.040927, -0.077253,
495  + -0.020216, 0.080196, -0.101216, 0.061195, -0.004749/
496 c * 43.1001 mb:
497  data (coef(i,34,3),i=0,nx)/
498  + 36.821239, 0.962303, -0.118428, 0.027547, -0.047621,
499  + -0.012155, 0.048844, -0.061407, 0.037009, -0.002629/
500 c * 47.1882 mb:
501  data (coef(i,35,3),i=0,nx)/
502  + 14.277436, 1.044823, -0.109435, 0.014568, -0.018874,
503  + -0.004335, 0.018428, -0.022788, 0.013544, -0.000572/
504 
505  end
506 
507  subroutine cofit3_64(xx1,xx2,xx3,yy1,yy2,yy3, c0,c1,c2)
508 c * obtain coefficients for 3-point parabolic fit
509 
510  implicit real*8 (a-h,o-z)
511 
512  x1=xx1
513  x2=xx2
514  x3=xx3
515 
516  y1=yy1
517  y2=yy2
518  y3=yy3
519 
520  x12=x1*x1
521  x22=x2*x2
522  x32=x3*x3
523 
524  t1=x2*x32-x3*x22
525  t2=-(x1*x32-x3*x12)
526  t3=x1*x22-x2*x12
527 
528  det=t1+t2+t3
529 
530  c0=(y1*t1+y2*t2+y3*t3)/det
531  c1=((y2*x32-y3*x22)-(y1*x32-y3*x12)+(y1*x22-y2*x12))/det
532  c2=((x2*y3-x3*y2)-(x1*y3-x3*y1)+(x1*y2-x2*y1))/det
533 
534  return
535  end
void fit(float x[], float y[], int ndata, float sig[], int mwt, float *a, float *b, float *siga, float *sigb, float *chi2, float *q)
#define real
Definition: DbAlgOcean.cpp:26
README for MOD_PR03(V6.1.0) 2. POINTS OF CONTACT it can be either SDP Toolkit or MODIS Packet for Terra input files The orbit validation configuration parameter(LUN 600281) must be either "TRUE" or "FALSE". It needs to be "FALSE" when running in Near Real Time mode
subroutine extem101_64(tt, slat)
Definition: extem101_64.f:2
subroutine cofit3_64(xx1, xx2, xx3, yy1, yy2, yy3, c0, c1, c2)
Definition: extem101_64.f:508
void load(float x1, float v[], float y[])
subroutine tt(NMAX, NCHECK)
Definition: ampld.lp.f:1852
for(i=0;i< NROOTS;i++) s[i]
Definition: decode_rs.h:85
#define abs(a)
Definition: misc.h:90