ocssw
V2022
|
l3binmerge.cpp
Go to the documentation of this file.
29 extern "C" int l3bin_input(int argc, char **argv, instr *input, const char* prog, const char* version);
virtual int64_t get_bin_num(int kbin)=0
virtual int get_nobs(int kbin)=0
virtual int readSums(float *sums, int32_t nbins_to_read, int iprod)=0
virtual void setProductList(int numProducts, char *prodNames[])
Definition: bin_io.cpp:2807
virtual int inc_weights(int offset, float weights)=0
virtual int create(const char *l3b_filename, int32_t nrows)=0
virtual int close()=0
virtual int64_t get_beg()=0
virtual int copy_binlist(int src, int dest)=0
virtual int get_nscenes(int kbin)=0
int setlinebuf(FILE *stream)
virtual int get_ext()=0
Definition: hdf_bin.h:14
virtual int set_weights(int offset, float weights)=0
virtual int copymeta(int32_t nfiles, Hdf::hdf_bin *input_binfile[])
Definition: bin_io.cpp:2874
int l3bin_input(int argc, char **argv, instr *input, const char *prog, const char *version)
Definition: l3bin_input.c:336
===========================================================================V5.0.48(Terra) 03/20/2015 Changes shown below are differences from MOD_PR02 V5.0.46(Terra)============================================================================Changes noted for V6.1.20(Terra) below were also instituted for this version.============================================================================V6.1.20(Terra) 03/12/2015 Changes shown below are differences from MOD_PR02 V6.1.18(Terra)============================================================================Changes from v6.1.18 which may affect scientific output:A situation can occur in which a scan which contains sector rotated data has a telemetry value indicating the completeness of the sector rotation. This issue is caused by the timing of the instrument command to perform the sector rotation and the recording of the telemetry point that reports the status of sector rotation. In this case a scan is considered valid by L1B and pass through the calibration - reporting extremely high radiances. Operationally the TEB calibration uses a 40 scan average coefficient, so the 20 scans(one mirror side) after the sector rotation are contaminated with anomalously high radiance values. A similar timing issue appeared before the sector rotation was fixed in V6.1.2. Our analysis indicates the ‘SET_FR_ENC_DELTA’ telemetry correlates well with the sector rotation encoder position. The use of this telemetry point to determine scans that are sector rotated should fix the anomaly occured before and after the sector rotation(usually due to the lunar roll maneuver). The fix related to the sector rotation in V6.1.2 is removed in this version.============================================================================V6.1.18(Terra) 10/01/2014 Changes shown below are differences from MOD_PR02 V6.1.16(Terra)============================================================================Added doi attributes to NRT(Near-Real-Time) product.============================================================================V6.1.16(Terra) 01/27/2014 Changes shown below are differences from MOD_PR02 V6.1.14(Terra)============================================================================Migrate to SDP Toolkit 5.2.17============================================================================V6.1.14(Terra) 06/26/2012 Changes shown below are differences from MOD_PR02 V6.1.12(Terra)============================================================================Added the doi metadata to L1B product============================================================================V6.1.12(Terra) 04/25/2011 Changes shown below are differences from MOD_PR02 V6.1.8(Terra)============================================================================1. The algorithm to calculate uncertainties for reflective solar bands(RSB) is updated. The current uncertainty in L1B code includes 9 terms from prelaunch analysis. The new algorithm regroups them with the new added contributions into 5 terms:u1:the common term(AOI and time independent) and
Definition: HISTORY.txt:126
virtual int open(const char *l3b_filename)=0
virtual int incNumRec(int n_write)=0
virtual int writeSums(float *sums, int32_t nbins_to_write, const char *prodname)=0
virtual int setDataPtr(int nbins_to_read)=0
Definition: hdf_bin.h:438
Definition: hdf_bin.h:134
virtual int get_prodname(int iprod, char *prodname)
Definition: bin_io.cpp:2802
virtual int inc_nobs(int offset, int nobs)=0
this program makes no use of any feature of the SDP Toolkit that could generate such a then geolocation is calculated at that and then aggregated up to Resolved feature request Bug by adding three new int8 SDSs for each high resolution offsets between the high resolution geolocation and a bi linear interpolation extrapolation of the positions This can be used to reconstruct the high resolution geolocation Resolved Bug by delaying cumulation of gflags until after validation of derived products Resolved Bug by setting Latitude and Longitude to the correct fill resolving to support Near Real Time because they may be unnecessary if use of entrained ephemeris and attitude data is turned resolving bug report Corrected to filter out Aqua attitude records with missing status helping resolve bug MOD_PR03 will still correctly write scan and pixel data that does not depend upon the start time
Definition: HISTORY.txt:248
u5 which has been done in the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT production Changes from v6 which may affect scientific the sector rotation may actually occur during one of the scans earlier than the one where it is first reported As a the b1 values are about the LOCALGRANULEID metadata should have an extension NRT It is requested to identify the NRT to fill pixels affected by dead subframes with a special value Output the metadata of noisy and dead subframe Dead Subframe EV and Detector Quality Flag2 Removed the function call of Fill_Dead_Detector_SI to stop interpolating SI values for dead but also for all downstream products for science test only Changes from v5 which will affect scientific to conform to MODIS requirements Removed the Mixed option from the ScanType in the code because the L1A Scan Type is never Mixed Changed for ANSI C compliance and comments to better document the fact that when the HDF_EOS metadata is stricly the and products are off by and in the track respectively Corrected some misspelling of RCS swir_oob_sending_detector to the Reflective LUTs to enable the SWIR OOB correction detector so that if any of the sending detectors becomes noisy or non near by good detectors from the same sending band can be specified as the substitute in the new look up table Code change for adding an additional dimension of mirror side to the Band_21_b1 LUT to separate the coefficient of the two mirror sides for just like other thermal emissive so that the L1B code can calibrate Band scan to scan with mirror side dependency which leads better calibration result Changes which do not affect scientific when the EV data are not provided in this Crosstalk Correction will not be performed to the Band calibration data Changes which do not affect scientific and BB_500m in L1A Logic was added to turn off the or to spatial aggregation processes and the EV_250m_Aggr1km_RefSB and EV_500m_Aggr1km_RefSB fields were set to fill values when SDSs EV_250m and EV_500m are absent in L1A file Logic was added to skip the processing and turn off the output of the L1B QKM and HKM EV data when EV_250m and EV_500m are absent from L1A In this the new process avoids accessing and reading the and L1A EV skips and writing to the L1B and EV omits reading and subsampling SDSs from geolocation file and writing them to the L1B and omits writing metadata to L1B and EV and skips closing the L1A and L1B EV and SDSs Logic was added to turn off the L1B OBC output when the high resolution OBC SDSs are absent from L1A This is accomplished by skipping the openning the writing of metadata and the closing of the L1B OBC hdf which is Bit in the scan by scan bit QA has been changed Until now
Definition: HISTORY.txt:361
virtual int set_bin_num(int offset, int64_t bin_num)=0
virtual int clear_binlist()=0
Definition: hdf_bin.h:287
virtual int readBinIndex(int row_num_to_read)=0
virtual int readBinList(int nbins_to_read)=0
How many dimensions is the output array Default is Not sure if anything above will work correctly strcpy(l2prod->title, "no title yet")
virtual int inc_nscenes(int offset, int nscenes)=0
virtual float get_weights(int kbin)=0
virtual int writeBinList(int32_t nbins_to_write)=0